{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用密度泛函理论计算分别得到的铂和铑的晶格内聚能-最近原子距离曲线,而后基于晶格反演方法构建得到了铂和铑的晶格反演势。同时详细给出了FCC晶格的反演系数等的具体计算方法和算法。通过将铂和铑的晶格反演势与已有的相应势函数比较发现两者是基本相同的,这证明了构建的铂和铑反演势是有效的。","authors":[{"authorName":"夏璐","id":"20bdbb71-1fa8-4b53-a524-b155d924d2d3","originalAuthorName":"夏璐"},{"authorName":"陆建生","id":"e80146a6-efbe-4dcd-9b8e-e3d9c69f5d06","originalAuthorName":"陆建生"},{"authorName":"陈松","id":"fe10db35-0749-4bf3-b3e1-63010a59b31b","originalAuthorName":"陈松"},{"authorName":"谢","id":"2da024f4-f393-40f1-bb67-0b4c1c3ca38e","originalAuthorName":"谢明"},{"authorName":"管伟","id":"b903a304-04ed-4fcb-b8dd-369287eb652e","originalAuthorName":"管伟明"},{"authorName":"潘勇","id":"ee120cf5-a7ac-4878-a3a2-d37ac9995add","originalAuthorName":"潘勇"},{"authorName":"胡洁琼","id":"59a62d4a-0888-487c-90f2-cd05484acbe1","originalAuthorName":"胡洁琼"},{"authorName":"杨有才","id":"cc36746f-e5dc-4615-8a79-34f6df12d084","originalAuthorName":"杨有才"},{"authorName":"","id":"ac8e7143-e92a-4f00-afa3-d96d5e032bff","originalAuthorName":"张吉明"},{"authorName":"王松","id":"b04f1763-a5b3-4e36-948a-b3c286941a69","originalAuthorName":"王松"},{"authorName":"陈永泰","id":"fd6006dd-00af-4a9f-9397-fdc8783c4dda","originalAuthorName":"陈永泰"},{"authorName":"王塞北","id":"75800936-9e8d-40f5-8130-c4138676432e","originalAuthorName":"王塞北"},{"authorName":"魏宽","id":"eed2966b-f4a3-4348-9074-247eb4554802","originalAuthorName":"魏宽"},{"authorName":"李爱坤","id":"6c73e72b-ba43-46af-af3b-7ffa2232e7e2","originalAuthorName":"李爱坤"},{"authorName":"李慕阳","id":"06777e15-a0ad-475f-b834-a75b8ca60e1f","originalAuthorName":"李慕阳"},{"authorName":"任县利","id":"6fbe812d-4bac-4676-a122-6279079e21b4","originalAuthorName":"任县利"}],"doi":"","fpage":"31","id":"91fbf013-214f-4ca9-a01e-7d053e21107a","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"cf2a5047-7258-4621-946a-5107e33a66e4","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"75204092-cf85-4297-996d-1058909af920","keyword":"铂","originalKeyword":"铂"},{"id":"7d7e07b5-8ff8-41d6-8c6e-59ce8ffc5cd3","keyword":"铑","originalKeyword":"铑"},{"id":"3a04a9c5-2a33-48be-b278-e7640ee65b86","keyword":"反演势","originalKeyword":"反演势"},{"id":"a6c66dcd-106d-44ca-8f47-525be463ddba","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"222a0bc9-4ffc-40f2-96f0-9eddd4072a51","keyword":"密度泛函","originalKeyword":"密度泛函"}],"language":"zh","publisherId":"gjs201401007","title":"铂和铑的晶格反演势的构建研究","volume":"","year":"2014"},{"abstractinfo":"势函数是用来描述介观层次系统中分子或原子间相互作用的一种数学模型,是在介观层次上进行材料显微结构分子动力学模拟的关键。针对贵金属及其合金总结了分子动力学模拟研究中常用势函数的枑型、数学形式和基本参数,介绍了各种势函数在实际研究中的具体应用情况,分析讨论了贵金属势函数的构建和应用中急需解决的问题、以及势函数研究的发展趋势。","authors":[{"authorName":"夏璐","id":"11d712e9-58d1-4718-b902-615f75704092","originalAuthorName":"夏璐"},{"authorName":"陈松","id":"85a401a8-eecd-4a40-b038-016befe7d1e1","originalAuthorName":"陈松"},{"authorName":"陆建生","id":"20a3ef6d-5af1-4694-9473-179e50b9e456","originalAuthorName":"陆建生"},{"authorName":"谢","id":"7d6d1205-d739-4ce0-908e-ee4e40fa027d","originalAuthorName":"谢明"},{"authorName":"潘勇","id":"8ef70226-91aa-4a60-97da-0eef85873e74","originalAuthorName":"潘勇"},{"authorName":"胡洁琼","id":"6aae245d-5933-4a3e-bd7c-1696b360d215","originalAuthorName":"胡洁琼"},{"authorName":"杨有才","id":"983560d7-c1f7-4e04-98ac-f44f3005efde","originalAuthorName":"杨有才"},{"authorName":"","id":"1062ef7f-8199-4a8a-a729-940da20bb880","originalAuthorName":"张吉明"},{"authorName":"王松","id":"3189b90b-f67a-4887-aa49-cf461ca92ca8","originalAuthorName":"王松"},{"authorName":"陈永泰","id":"774972b4-f8dd-40aa-ada1-1d0562e8ea89","originalAuthorName":"陈永泰"},{"authorName":"王塞北","id":"d9379b02-2b99-43d9-bc8f-d170e5a5a4a6","originalAuthorName":"王塞北"},{"authorName":"魏宽","id":"009d6bd2-ac39-4140-a0fd-4128ebd290c8","originalAuthorName":"魏宽"},{"authorName":"李爱坤","id":"a94b1042-5805-43df-a7b0-d2c95b1b10da","originalAuthorName":"李爱坤"},{"authorName":"慕阳","id":"2616e657-f12d-4461-8eee-8b6ce2a86db6","originalAuthorName":"慕阳"},{"authorName":"任县枬","id":"a68f0f25-4882-4224-b890-f357ea5d0f62","originalAuthorName":"任县枬"}],"doi":"","fpage":"82","id":"8f97958f-cff5-4f96-8e2c-5b5806f56150","issue":"4","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"922e6b8e-71e3-438c-9cad-a4e11f81757c","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"67c0c62a-e32e-41c3-a123-654a493a3434","keyword":"贵金属","originalKeyword":"贵金属"},{"id":"cc6810a0-ca6b-4210-944d-16f4f8cbaf1f","keyword":"势函数","originalKeyword":"势函数"},{"id":"08d65051-cdbb-48bc-9e87-d5008d7ca2a7","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"554565a2-d535-4ca9-8a0b-7c7041cae13c","keyword":"模拟","originalKeyword":"模拟"},{"id":"78dfc1ba-0afa-4fc8-98c8-a0f2997afecb","keyword":"介观","originalKeyword":"介观"}],"language":"zh","publisherId":"gjs201304017","title":"分子动力学模拟用贵金属势函数的应用与发展","volume":"","year":"2013"},{"abstractinfo":"介绍了昆明贵金属研究所计算材料学科20多年的发展过程和历程。详细介绍了各发展阶段中计算材料学在贵研所材料研究中在非晶态、势函数、高温材料、电接触材料、材料加工与成形,功能材料等领域开展过的主要研究工作以及取得的主要成果。预测了未来该学科的发展方向以及发展建议。","authors":[{"authorName":"陈松","id":"cfc7d787-b192-426d-b3ee-e69859633b7c","originalAuthorName":"陈松"},{"authorName":"郭俊梅","id":"3b1e06ec-e8db-4da7-be74-88715e18f4da","originalAuthorName":"郭俊梅"},{"authorName":"谢","id":"3588f8f4-dae0-4d58-a990-1ca7745bf206","originalAuthorName":"谢明"},{"authorName":"管伟","id":"75e49594-9c8b-42b4-a66e-ec2520ad7b4e","originalAuthorName":"管伟明"},{"authorName":"潘勇","id":"5a98b788-3bc1-4fb4-a85b-b2efec55be61","originalAuthorName":"潘勇"},{"authorName":"胡洁琼","id":"c66c1b05-efab-4120-80a9-4ace483e2114","originalAuthorName":"胡洁琼"},{"authorName":"","id":"6194c2a5-6804-44f6-acdf-da7177a8728e","originalAuthorName":"张吉明"},{"authorName":"陈永泰","id":"6781b356-5e45-478e-8f1a-367cb4397535","originalAuthorName":"陈永泰"},{"authorName":"刘满门","id":"0e25b46f-05d9-43ce-b0a0-d357e1c11717","originalAuthorName":"刘满门"},{"authorName":"杨有才","id":"2a8e8216-bed0-4fb6-b2f8-c6be6fee047e","originalAuthorName":"杨有才"},{"authorName":"王塞北","id":"1c8c2338-5e5f-446a-8123-9c5cc17a2648","originalAuthorName":"王塞北"},{"authorName":"王松","id":"1f9690cc-3171-4fdb-a4fe-f7258d488995","originalAuthorName":"王松"}],"doi":"","fpage":"96","id":"b2c3df4b-ac8c-46d8-9e4d-0fbd2bc67fda","issue":"z1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"0a7b7d5d-26a7-41e8-af9f-a6de2e3846f5","keyword":"计算材料学","originalKeyword":"计算材料学"},{"id":"c986acf7-5bfb-4840-bf92-83d00eb179ce","keyword":"贵金属","originalKeyword":"贵金属"},{"id":"c9484e35-69d5-49c5-a2d3-615e32ad7f35","keyword":"研究","originalKeyword":"研究"},{"id":"07ccb6bf-0955-4783-ba97-26cf5f1fb6a3","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"gjs2013z1021","title":"昆明贵金属研究所计算材料学科的发展","volume":"","year":"2013"},{"abstractinfo":"采用复合铸造方法制备了银包铜复合材料,研究了扩散退火温度和时间对复合材料显微组织和扩散层厚度的影响。结果表明:随着扩散热处理温度升高和保温时间的延长,扩散层厚度逐渐增加,在500℃和600℃保温60 min,出现了界面组织的球化现象。扩散层厚度与扩散处理时间的平方根成正比,扩散层生长激活能为51.9 kJ/mol。","authors":[{"authorName":"陈永泰","id":"8a479179-8868-44b3-a500-0ebeca56eed6","originalAuthorName":"陈永泰"},{"authorName":"谢","id":"0e9c0551-c665-4190-a1d8-f66d8b64c173","originalAuthorName":"谢明"},{"authorName":"杨有才","id":"2794c443-7ec9-44b0-adfa-0409da391ffc","originalAuthorName":"杨有才"},{"authorName":"王松","id":"c3e9903a-eeaa-435e-aab0-16b6ccb6285b","originalAuthorName":"王松"},{"authorName":"","id":"58f89977-14cc-417f-a6d9-f83d4ed8a8e0","originalAuthorName":"张吉明"},{"authorName":"刘满门","id":"55ea0e93-a245-45f4-839a-dc1fd4b5547b","originalAuthorName":"刘满门"},{"authorName":"王塞北","id":"ae3de787-3a42-422b-89fa-c08a696d3f7e","originalAuthorName":"王塞北"},{"authorName":"胡洁琼","id":"c9dad353-d0b1-43b9-8f19-584d1d819bb2","originalAuthorName":"胡洁琼"},{"authorName":"杨云峰","id":"95a88723-c721-49a0-a378-52c8f3cd9fc7","originalAuthorName":"杨云峰"},{"authorName":"李爱坤","id":"c12e36cb-b387-4819-9db6-1408bf50f8b8","originalAuthorName":"李爱坤"},{"authorName":"魏宽","id":"f8ac5b4f-b508-4a0c-848c-b375faf9ecba","originalAuthorName":"魏宽"}],"doi":"","fpage":"52","id":"e8d22420-1963-4a10-b329-d946e1e48ae2","issue":"z1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"28f1e559-ce04-4f9d-ae3e-072f5f8c95c4","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"956bfd60-267a-4b6f-90fa-ba6fde6f49df","keyword":"银包铜复合材料","originalKeyword":"银包铜复合材料"},{"id":"331d455c-514b-4e57-8762-207fb703ba57","keyword":"扩散退火","originalKeyword":"扩散退火"},{"id":"0698359e-bdbd-4fc8-a577-aa96f1a64db3","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"c3aa8409-2aea-41f8-9343-0c60558ebcd3","keyword":"扩散层","originalKeyword":"扩散层"},{"id":"2101434c-4adb-466e-8b01-79eb9e8a3f62","keyword":"生长激活能","originalKeyword":"生长激活能"}],"language":"zh","publisherId":"gjs2013z1012","title":"银包铜复合材料的界面研究","volume":"","year":"2013"},{"abstractinfo":"贵金属键合丝是半导体封装的关键材柞之一,详细综述柚键合金丝、键合金银丝、键合银丝和镀钯键合铜丝的合金成分设计,制备工艺和发展现状,并展望柚其未来发展前景。","authors":[{"authorName":"陈永泰","id":"35f86875-36a5-4826-8459-0bb8950e8eb9","originalAuthorName":"陈永泰"},{"authorName":"谢","id":"e519ef0d-3c38-44be-97d6-55c2689cb4ec","originalAuthorName":"谢明"},{"authorName":"王松","id":"8a7c0766-5852-42ce-b899-387e91f63c92","originalAuthorName":"王松"},{"authorName":"","id":"7d446a47-e415-440b-9179-485e52342638","originalAuthorName":"张吉明"},{"authorName":"杨有才","id":"a4391672-9794-4bf6-9d04-06d38521818a","originalAuthorName":"杨有才"},{"authorName":"栄满门","id":"4be4721b-3f8c-4f1f-8c71-feed32148b4b","originalAuthorName":"栄满门"},{"authorName":"王塞北","id":"2447d6ce-764e-4c77-866d-220f145f6090","originalAuthorName":"王塞北"},{"authorName":"胡洁琼","id":"abf090fd-d1dc-4feb-917e-1daf038580a6","originalAuthorName":"胡洁琼"},{"authorName":"李爱坤","id":"22bf9925-0eba-43de-b584-b2160e6e63f6","originalAuthorName":"李爱坤"},{"authorName":"魏宽","id":"9e5ca230-6be0-464b-bf9a-01ac112dc408","originalAuthorName":"魏宽"}],"doi":"","fpage":"66","id":"0e2e6656-96dc-43b3-a415-edeb02b4a01c","issue":"3","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"626257dc-174a-4745-877f-02fd476b4ee5","keyword":"金属材柞","originalKeyword":"金属材柞"},{"id":"69e7268a-2240-4f4a-a449-16190e3874db","keyword":"贵金属键合丝","originalKeyword":"贵金属键合丝"},{"id":"b3cc8ab6-0529-4542-8a3d-4fec2e7af960","keyword":"合金成分","originalKeyword":"合金成分"},{"id":"4d6b9cf7-77ff-4d3d-bab5-13c3b13ddec6","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"7d8c6c06-8f54-40b0-a7bf-6b95caf4c9de","keyword":"发展现状","originalKeyword":"发展现状"}],"language":"zh","publisherId":"gjs201403016","title":"贵金属键合丝材料的研究进展","volume":"","year":"2014"},{"abstractinfo":"为了充分利用高强高导电铜合金的导电性和强度,以及银石墨材料的润滑性,改善CuCrY、CuCrZrY材料的耐磨性能,采用电镀的方法成功地对CuCrY、CuCrZrY材料表面进行了镀覆.研究了镀层的组成及电镀工艺条件,得到较好的镀液组分及电镀方案;通过优化工艺参数得到平均厚度为100~200μm的镀银石墨层.同时,采用扫描电镜及能谱等对镀银石墨层的厚度、表面形貌,镀银石墨层与基体的界面进行了分析.结果表明,CuCrY/AgC、CuCrZrY/AgC复合材料表面镀层均匀、致密,AgC复合层厚度一致,稳定.界面成锯齿状,机械结合的特征十分明显,有利于改善基体和银石墨界面的结合.","authors":[{"authorName":"谢","id":"17cf79de-55c8-44d8-8ddd-e82d488da930","originalAuthorName":"谢明"},{"authorName":"杨有才","id":"4c28fed0-d9f9-4560-8089-f38a2ce80247","originalAuthorName":"杨有才"},{"authorName":"李季","id":"a0ea58d5-3200-4a66-9efc-51a01445bc44","originalAuthorName":"李季"},{"authorName":"程勇","id":"ca4e6987-c0f6-4204-bae2-0f38d7429833","originalAuthorName":"程勇"},{"authorName":"陈永泰","id":"a2fff912-972e-4f99-a448-973f9e5ecc53","originalAuthorName":"陈永泰"},{"authorName":"崔浩","id":"17d369e6-4f64-41af-8e90-eac1ffaaa75b","originalAuthorName":"崔浩"},{"authorName":"刘满门","id":"9d451fa3-2211-4ee2-9125-a87564beca3e","originalAuthorName":"刘满门"},{"authorName":"","id":"9a4109ba-f25a-4f4c-a41f-d0778f6dddd8","originalAuthorName":"张吉明"},{"authorName":"国全","id":"8e2be591-fbc6-43fd-a427-d96afc985f31","originalAuthorName":"张国全"},{"authorName":"史庆南","id":"bb09fb42-bed3-4d31-addc-3a74dd976bf6","originalAuthorName":"史庆南"}],"doi":"10.3969/j.issn.1004-0676.2011.02.001","fpage":"1","id":"4cc4d650-df5c-4dfa-891c-93c6c9effe27","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"705c5022-1f1a-4dc0-8215-dc71e7455828","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d93808f9-6a58-4e63-b6c4-52dde9ac09b1","keyword":"高强高导电铜合金","originalKeyword":"高强高导电铜合金"},{"id":"b9af7dc9-2e81-4be4-9cdc-38337739f4ee","keyword":"电镀","originalKeyword":"电镀"},{"id":"48cbfbdb-df8d-4aea-aed7-b96cc0e49c6a","keyword":"银石墨","originalKeyword":"银石墨"},{"id":"e18b6ab1-7eaf-4831-be42-39e13068ee21","keyword":"镀层厚度","originalKeyword":"镀层厚度"},{"id":"e4d7a965-02fa-413a-adac-48108c72b1cd","keyword":"镀液","originalKeyword":"镀液"}],"language":"zh","publisherId":"gjs201102001","title":"CuCrY、CuCrZrY合金表面镀AgC材料的研究","volume":"32","year":"2011"},{"abstractinfo":"采用包覆法制备了Ag-20Cu(体积分数,%,下同)复合材料初始锭坯,热挤压成复合线材,再通过冷拉拔大变形制得Ag-20Cu复合丝.分别测量了不同真应变η下复合丝材的力学性能;通过扫描电镜测量不同真应变η下Ag和Cu两相尺寸变化,观察了其断裂形貌.通过上述实验研究了变形过程中Ag-20Cu复合材料的各相变形特征.研究结果表明:变形过程中,由于复合材料各组成相的力学性能不同,Ag和Cu两相发生协调变形,且不同变形阶段两相的协调变形方式不同;由于各相在变形过程中存在不同程度的加工硬化和回复,不同的变形阶段,复合材料的性能变化趋势不同,各相对复合材料性能的影响也不相同.","authors":[{"authorName":"耿永红","id":"453548f8-1f87-4b10-ab07-0470c4d35a78","originalAuthorName":"耿永红"},{"authorName":"郭迎春","id":"28ea7496-118a-4668-aa19-97c33fe8b89d","originalAuthorName":"郭迎春"},{"authorName":"毕珺","id":"a8f031f2-3351-4e27-8693-ddbec90e152c","originalAuthorName":"毕珺"},{"authorName":"","id":"53bb4221-6a0a-43e7-b04a-eb2970cb77ed","originalAuthorName":"张吉明"},{"authorName":"王传军","id":"bd7c1f4f-6036-4800-b6ae-bfc4d0f326ca","originalAuthorName":"王传军"},{"authorName":"陈松","id":"87d283b8-10a4-4cf6-b865-d3b382bdd554","originalAuthorName":"陈松"},{"authorName":"管伟","id":"03bdc5f1-1606-4ea7-8ce9-3f898e145e0a","originalAuthorName":"管伟明"},{"authorName":"昆华","id":"f2d7c737-8064-4599-ad1b-92ea48210e0a","originalAuthorName":"张昆华"}],"doi":"","fpage":"697","id":"0eb2cbb2-a057-4752-80eb-b2314c59e115","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"d375d9f6-5351-49d1-8d91-1f6da4450d39","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"15d6ec10-cf92-4cc7-a084-08cf8f897463","keyword":"Ag基复合材料","originalKeyword":"Ag基复合材料"},{"id":"2be207ea-039e-4b66-ab03-4692b0a92007","keyword":"大塑性变形","originalKeyword":"大塑性变形"},{"id":"6748edb8-74cb-471e-9d99-8aa9827a630c","keyword":"形变特征","originalKeyword":"形变特征"}],"language":"zh","publisherId":"xyjsclygc201004029","title":"大塑性变形Ag-20Cu复合丝材各相变形特征","volume":"39","year":"2010"},{"abstractinfo":"采用粉末冶金、挤恪工艺制备了碳纳米管增强银基(Ag-CNTs(5%,体积比))复合材料丝材,并研究了其导电率、抗拉强度、硬度等物理性能。结果表明,采用混合酸处理可有效改善CNTs的分散性,CNTs表面的银镀层改善了CNTs与Ag基体间的界面结合以及复合材料的致密性,保证了材料的良好加工性能。与纯Ag相比,Ag-CNTs复合材料电阻率提高了30%,而抗拉强度提高了43%,硬度提高了近1倍,说明CNTs起到了较好的增强作用。","authors":[{"authorName":"李爱坤","id":"dd97956b-423d-4667-8aff-8f1f105269ce","originalAuthorName":"李爱坤"},{"authorName":"谢","id":"95ab29ff-d508-4250-8649-a8c4fc9a4ad9","originalAuthorName":"谢明"},{"authorName":"","id":"9a759b27-ca61-43e0-8e05-71f2f12bbf97","originalAuthorName":"张吉明"},{"authorName":"杨有才","id":"daf6790e-5a77-4cf7-ac82-1aa694185abd","originalAuthorName":"杨有才"},{"authorName":"陈永泰","id":"b2ed3b02-ef7b-4d93-8109-d9c41c6a644e","originalAuthorName":"陈永泰"},{"authorName":"王松","id":"c8ffe43a-42f0-4ff3-a580-1477314e078c","originalAuthorName":"王松"},{"authorName":"刘满门","id":"ff215c94-5a2b-4f34-8286-cfac25b3e7ec","originalAuthorName":"刘满门"},{"authorName":"李再久","id":"9ba6de1e-9a3c-4ca4-844e-b003af81f078","originalAuthorName":"李再久"}],"doi":"","fpage":"27","id":"210a1387-7b38-4959-b85a-2625787e08bd","issue":"z1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"77b24bb2-15ce-488b-9b96-b8f08e5b324f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"b4f8de0b-5185-43c4-9ba8-50fbf4574d3f","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"c0f92635-79f8-4365-acce-278b4527273e","keyword":"银","originalKeyword":"银"},{"id":"9d41ebf3-8770-4d7e-bb99-bb66d25f68a9","keyword":"制备","originalKeyword":"制备"},{"id":"7a8264da-42d4-495a-92b4-9d0abe26687b","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gjs2015z1006","title":"化学镀银碳纳米管增强银基复合材料的制备和性能","volume":"","year":"2015"},{"abstractinfo":"微电子行业的迅速兴起,对铜系材料提出了更高的要求.铜系材料部件的小型化、复杂化使得金属粉末注射成形工艺得到了越来越广泛的重视.介绍了金属粉末注射成形工艺及其应用,从纯铜、铜合金、铜复合材料3个方面阐述了金属粉末注射成形工艺的国内外发展近况.","authors":[{"authorName":"刘满门","id":"11d412dc-871f-4dbb-ae92-ee343524a430","originalAuthorName":"刘满门"},{"authorName":"刘捷","id":"ffe6dbc1-ac13-43a1-a5da-22cf1b863a54","originalAuthorName":"刘捷"},{"authorName":"谢","id":"dfec0cbf-769d-4cf6-99b9-10bcedcbce47","originalAuthorName":"谢明"},{"authorName":"杨有才","id":"d052c370-e229-4ab2-a7ac-f5d5d8b81fdf","originalAuthorName":"杨有才"},{"authorName":"陈永泰","id":"d8d293b1-06a5-4ad7-9000-6ec88b8063cf","originalAuthorName":"陈永泰"},{"authorName":"崔浩","id":"b90954b8-643e-4cb8-9baa-d39500f497dc","originalAuthorName":"崔浩"},{"authorName":"","id":"b09bc983-20a2-48da-a4ff-c2e5b38a5e58","originalAuthorName":"张吉明"},{"authorName":"陈宏燕","id":"823e8bde-3340-4581-b4ed-e1cb510bbc73","originalAuthorName":"陈宏燕"}],"doi":"","fpage":"85","id":"3221fbaa-7049-47c6-86b7-566408d29248","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5038aa6d-5df8-4dcb-bcc9-080e8e8f3522","keyword":"金属粉末注射成形工艺","originalKeyword":"金属粉末注射成形工艺"},{"id":"ade7e1bf-cad4-4690-b383-bb669966db08","keyword":"纯铜","originalKeyword":"纯铜"},{"id":"dd99dc8f-2be4-47dd-bcd2-295868d22849","keyword":"铜合金","originalKeyword":"铜合金"},{"id":"efae76c9-57ee-4773-a5a9-60d2f51deb08","keyword":"铜复合材料","originalKeyword":"铜复合材料"}],"language":"zh","publisherId":"cldb201107018","title":"铜系材料注射成形研究进展","volume":"25","year":"2011"},{"abstractinfo":"采用密度泛函理论研究了AuxCuy金属间化合物的稳定性,热学和力学性能.通过计算AuxCuy各合金相的形成能和生成焓可知各个合金相是热力学稳定的,且计算出来的晶格常数与实验值吻合得较好.采用准简谐近似法计算了合金相的定容比热,对与化学键强度相关的德拜温度也进行了讨论.体模量,杨氏模量等弹性性7","originalAuthorName":"张吉明"},{"authorName":"杨有才","id":"daf6790e-5a77-4cf7-ac82-1aa694185abd","originalAuthorName":"杨有才"},{"authorName":"陈永泰","id":"b2ed3b02-ef7b-4d93-8109-d9c41c6a644e","originalAuthorName":"陈永泰"},{"authorName":"王松","id":"c8ffe43a-42f0-4ff3-a580-1477314e078c","originalAuthorName":"王松"},{"authorName":"刘满门","id":"ff215c94-5a2b-4f34-8286-cfac25b3e7ec","originalAuthorName":"刘满门"},{"authorName":"李再久","id":"9ba6de1e-9a3c-4ca4-844e-b003af81f078","originalAuthorName":"李再久"}],"doi":"","fpage":"27","id":"210a1387-7b38-4959-b85a-2625787e08bd","issue":"z1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"77b24bb2-15ce-488b-9b96-b8f08e5b324f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"b4f8de0b-5185-43c4-9ba8-50fbf4574d3f","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"c0f92635-79f8-4365-acce-278b4527273e","keyword":"银","originalKeyword":"银"},{"id":"9d41ebf3-8770-4d7e-bb99-bb66d25f68a9","keyword":"制备","originalKeyword":"制备"},{"id":"7a8264da-42d4-495a-92b4-9d0abe26687b","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gjs2015z1006","title":"sue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"555f1955-c264-42de-98b3-13c64fb0479b","keyword":"AuxCuv金属间化合物","originalKeyword":"AuxCuv金属间化合物"},{"id":"71e613ce-5f31-4b07-8863-ef5f5fd8296a","keyword":"弹性常数","originalKeyword":"弹性常数"},{"id":"2a7990ca-ccef-4cd7-b00f-4089b37f78c1","keyword":"德拜温度","originalKeyword":"德拜温度"},{"id":"5caf32b4-f109-436e-ad5e-021353178278","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"xyjsclygc201511016","title":"AuxCuy金属间化合物的稳定性和热学性能的第一性原理研究","volume":"44","year":"2015"}],"totalpage":96,"totalrecord":959}