{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用OP-10(表面活性剂)/异戊醇(助表面活性剂)/水/环已烷(油)W/O微乳液为反应器,以草酸盐沉淀为前驱物制备了SrY2O4:Eu3+超细荧光粉.通过热重及差热分析(TG-ETA)、X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱观测,研究了SrY2O4:Eu3+超细荧光粉的制备条件、形貌以及光致发光性能.XRD结果表明,1000℃烧结2h可得到SrY2O4纯相.扫描电镜照片显示颗粒基本为橄榄球形,粒径约为70nm~100nm.分别以250nm和260nm的近紫外光激发样品,SrY2(1-x)O4:Eu2x3+超细荧光粉发出明亮的红光,对应于Eu3+的4f-4f跃迁,当Eu3+的掺杂浓度为9%(摩尔分数,下同)时,在610nm和615nm处的发光强度最大,而5D0→7F0和5D0→7F1跃迁的分裂表明Eu3+在SrY2O4晶格中占据了Y3+的两种不同格位.","authors":[{"authorName":"周立亚","id":"1afd4bea-33b4-41b1-9fe1-1bc8d35735c9","originalAuthorName":"周立亚"},{"authorName":"石建新","id":"ffc33dff-c824-4afb-8587-23fb38dc08a0","originalAuthorName":"石建新"},{"authorName":"龚孟濂","id":"c1f21f25-9d72-41ae-9dfd-7c582829189a","originalAuthorName":"龚孟濂"}],"doi":"10.3969/j.issn.1004-0277.2008.03.008","fpage":"32","id":"2954d464-92ad-4c75-bb14-6d0800cd19d1","issue":"3","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"6883f638-1771-4a91-87e2-df831fc0bdaf","keyword":"SrY2O4","originalKeyword":"SrY2O4"},{"id":"b8b12ac3-b0e6-4ab5-a8bd-9fdfa666ac24","keyword":"Eu3+","originalKeyword":"Eu3+"},{"id":"cd5e4a8a-6114-4a59-b8af-18227bd46c45","keyword":"微乳液","originalKeyword":"微乳液"},{"id":"4b47817a-762b-4f5c-b724-cbcba1ec6e84","keyword":"光致发光","originalKeyword":"光致发光"}],"language":"zh","publisherId":"xitu200803008","title":"SrY2O4:Eu3+超细荧光粉的制备及光致发光性能研究","volume":"29","year":"2008"},{"abstractinfo":"以Sr2+, Y3+和Eu3+的混合硝酸盐溶液为阳离子溶液, 以(NH4)2CO3为沉淀剂, 共沉淀法制备了碳酸盐前驱体, TG-DSC分析结果表明, 随着(NH4)2CO3浓度的升高, 前驱体组成由碱式碳酸盐向正盐转变. 以CS2为硫化剂, 高温煅烧前驱体合成了SrY2S4:Eu2+红色荧光粉. XRD表明前驱体经800 ℃处理得到纯相SrY2S4. 荧光光谱和SEM研究表明在[Sr(NO3)2+Eu(NO3)3]:[Y(NO3)3]:[(NH4)2CO3]=0.25:0.50:2.00(摩尔比)条件下制备前驱体, 然后1050 ℃煅烧4 h所得荧光粉的发光强度最大, 粒径小于1 μm, 粒子形貌呈椭球. Eu2+在SrY2S4基质中的最佳掺杂摩尔分数是0.6%.","authors":[{"authorName":"田科明","id":"d7dc7645-4537-462f-bea7-97cda866415c","originalAuthorName":"田科明"},{"authorName":"廉世勋","id":"4c3cb045-ba82-4a0b-8d84-67edee2eb7cb","originalAuthorName":"廉世勋"},{"authorName":"尹笃林","id":"9ea35512-95e9-452f-8321-d0a36fc9ed83","originalAuthorName":"尹笃林"},{"authorName":"李承志","id":"d595e247-8727-46b1-b5e5-4fcf0c9b7b78","originalAuthorName":"李承志"},{"authorName":"朱爱玲","id":"dc9ba33c-241d-418d-bb97-bab5ac733545","originalAuthorName":"朱爱玲"},{"authorName":"张华京","id":"da5984bb-03bc-488b-b8b4-8876d6d4e8c1","originalAuthorName":"张华京"}],"doi":"10.3969/j.issn.0258-7076.2006.05.014","fpage":"639","id":"a82da52b-5b0a-4e38-aabd-cf46ff406ea0","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"60b6db49-bc06-45e0-8241-40bd66c7663c","keyword":"SrY2S4:Eu2+","originalKeyword":"SrY2S4:Eu2+"},{"id":"45d8a541-1fed-4694-b2f7-904a46845ad2","keyword":"共沉淀","originalKeyword":"共沉淀"},{"id":"dd217d0c-9712-45be-8005-6a18af81f2b3","keyword":"碳酸盐前驱体","originalKeyword":"碳酸盐前驱体"}],"language":"zh","publisherId":"xyjs200605014","title":"碳酸盐前驱体和CS2硫化制备SrY2S4:Eu2+红色荧光粉及其表征","volume":"30","year":"2006"},{"abstractinfo":"为了提高质子-电子混合导电膜的电子导电性,采用浸渍法对SrCe0.9Y0.1O3-δ粉体进行Pt修饰,制备出含Pt的SrCe0.9Y0.1O3-δ质子导电膜(Pt/SCY膜),并对其致密性、物相、微结构、电子导电性进行了研究.研究结果表明,在1450℃保温3h,得到的Pt含量≤0.2%(质量分数)的Pt/SCY膜具有正交钙钛矿结构,且相对密度达98%.当保温时间延长或Pt掺入量增加时,Pt/SCY膜中出现SrY2O4和Y2O3相.Pt/SCY膜在H2还原前后具有不同的微观结构,通过对膜在空气中的交流阻抗谱测试,发现Pt修饰改变了400℃以下电子的传导机制,显著地提高了低温区电子导电率.","authors":[{"authorName":"陈国涛","id":"8f1b7bb8-b1e5-4c97-9f87-f689361a4cb1","originalAuthorName":"陈国涛"},{"authorName":"谷景华","id":"f5c48098-fea3-44f1-a07f-cb4bf76bdf51","originalAuthorName":"谷景华"},{"authorName":"张跃","id":"b146e9ae-f630-4a06-aaec-5f1196e0c899","originalAuthorName":"张跃"}],"doi":"","fpage":"217","id":"e193e327-fbfa-4ccb-82f9-73b697074633","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6f0ed545-0ac4-4569-bfeb-9d2546827185","keyword":"质子-电子混合导电膜","originalKeyword":"质子-电子混合导电膜"},{"id":"20c29b68-4e4f-4504-b306-e8c9fa48e001","keyword":"SrCeO3","originalKeyword":"SrCeO3"},{"id":"ada9d9fd-0868-4e5b-893d-dad616768391","keyword":"Pt修饰","originalKeyword":"Pt修饰"},{"id":"cbada836-32ad-4746-9c66-ac338b71746f","keyword":"交流阻抗谱","originalKeyword":"交流阻抗谱"}],"language":"zh","publisherId":"gncl200702016","title":"Pt修饰的SrCe0.9Y0.1O3-δ膜的制备与电性能研究","volume":"38","year":"2007"},{"abstractinfo":"The BaB2O4-BaF2-2NaF-NaB2O4 reciprocal system has been investigated by combination of experimental measurements with theoretical calculation. The Na2B2O4-2NaF binary and Na2B2O4-BaF2 pseudo-binary phase diagrams are measured by means of DTA and X-ray diffraction. The thermodynamic functions for all sub-binary systems are derived from measured phase diagrams and thermodynamic data by CAL-PHAD technique, and the sub-binary phase diagrams are calculated according to phase equilibrium principle. Then, the thermodynamic functions for sub-binary systems are extrapolated to the BaB2O4-BaF2-2NaF-Na2B2O4 reciprocal system, and the phase diagram of the reciprocal system is calculated. The calculated phase diagrams are verified by additional experiments. (C) 1996 Academic Press, Inc.","authors":[],"categoryName":"|","doi":"","fpage":"80","id":"64f02558-2db2-463e-a865-bfd6c53ccdc6","issue":"1","journal":{"abbrevTitle":"JOSSC","id":"4fabf078-5d8e-44a5-92c1-bc1fac4e5f4b","issnPpub":"0022-4596","publisherId":"JOSSC","title":"Journal of Solid State Chemistry"},"keywords":[{"id":"322c2bcf-fd54-4558-818c-c44d2d0d9c6b","keyword":"phase-equilibrium;beta-bab2o4;crystal","originalKeyword":"phase-equilibrium;beta-bab2o4;crystal"}],"language":"en","publisherId":"0022-4596_1996_1_2","title":"Thermodynamic investigation on the BaB2O4-BaF2-2NaF-Na2B2O4 reciprocal system","volume":"126","year":"1996"},{"abstractinfo":"The crystal structures of Nd(4)Ga(2)O(9) and Sm(4)Ga(2)O(9) compounds synthesized by solid-state reaction at 1400degreesC are investigated. X-ray diffraction shows that Nd(4)Ga(2)O(9) and Sm(4)Ga(2)O(9) are monoclinic system with the space group P2(1)/c, and lattice parameters a = 7.7656(1) Angstrom, b = 10.9689(1) Angstrom, c = 11.4727(1) Angstrom, beta = 109.06(1)degrees for Nd(4)Ga(2)O(9), and a = 7.6613(1) Angstrom, b = 10.8546(1) Angstrom, c = 11.4080(1) Angstrom, beta = 108.80(1)degrees for Sm(4)Ga(2)O(9). The gallium atoms are in the center of distorted oxygen tetrahedra with an average Ga-O bond distance between 1.82 and 1.85 Angstrom. The rare earth atoms are sixfold or sevenfold coordinated by oxygen. The oxygen atoms are threefold and fourfold coordinated. The magnetization for these compounds clearly reflects paramagnetism. The magnetic susceptibility chi changes with temperature in a Curie-type manner. (C) 2004 Elsevier B.V All rights reserved.","authors":[],"categoryName":"|","doi":"","fpage":"26","id":"743a6590-2398-4be7-be26-7c001a32a733","issue":"42737","journal":{"abbrevTitle":"JOAAC","id":"de8b3eb8-d3c1-4889-812c-8ad260eabadc","issnPpub":"0925-8388","publisherId":"JOAAC","title":"Journal of Alloys and Compounds"},"keywords":[{"id":"3d5b44ac-b2d2-48b7-8324-e4fc468818b4","keyword":"Nd(4)Ga(2)O(9);Sm(4)Ga(2)O(9);crystal structure;Rietveld refinement;x-ray diffraction;garnets","originalKeyword":"Nd(4)Ga(2)O(9);Sm(4)Ga(2)O(9);crystal structure;Rietveld refinement;x-ray diffraction;garnets"}],"language":"en","publisherId":"0925-8388_2004_42737_1","title":"Crystal structure and magnetic properties Nd(4)Ga(2)O(9) and Sm(4)Ga(2)O(9)","volume":"381","year":"2004"},{"abstractinfo":"Mn(2)O(3)/Mn(3)O(4) nanoclusters were prepared by air oxidation of Mn(3)O(4) nanoparticles. The nanoparticles located at the surface of the Mn(2)O(3)/Mn(3)O(4) nanoclusters are oxidized to Mn(3)O(4) to form the special structure of the Mn(2)O(3)/Mn(3)O(4) nanoclusters. An exchange bias was observed in the Mn(2)O(3)/Mn(3)O(4) nanoclusters, which was induced by exchange coupling between ferromagnetic Mn(3)O(4) and antiferromagnetic Mn(3)O(4) phases. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3055349]","authors":[],"categoryName":"|","doi":"","fpage":"","id":"0f1ca65f-5d0b-444e-ba95-b140005310ab","issue":"7","journal":{"abbrevTitle":"JOAP","id":"7dcf8a89-0513-40ee-be2d-759941dcef7e","issnPpub":"0021-8979","publisherId":"JOAP","title":"Journal of Applied Physics"},"keywords":[{"id":"de0e5e22-c670-4fb9-9fdb-1860b947c6e0","keyword":"mn3o4;nanoparticles;anisotropy;particles;nanorods;mn2o3","originalKeyword":"mn3o4;nanoparticles;anisotropy;particles;nanorods;mn2o3"}],"language":"en","publisherId":"0021-8979_2009_7_8","title":"Magnetic properties and exchange bias in Mn(2)O(3)/Mn(3)O(4) nanoclusters","volume":"105","year":"2009"},{"abstractinfo":"通过简单调节反应介质热塑性酚醛树脂与乙二醇配比,选择性地制备了CoC2O4·2H2O纳米棒和纳米片晶体或其两种形貌晶体混合物.样品热重和差示扫描量热(TG-DSC)、X射线粉体衍射(XRD)、场发射扫描电镜( FESEM)实验表明:以热塑性酚醛树脂为反应介质得到了COC2O4·2H2O纳米棒;以乙二醇为反应介质得到了CoC2O4·2H2O纳米片;逐渐增大乙二醇和酚醛树脂质量比,实现了CoC2O4·2H2O形貌由纳米棒形貌转变为纳米片形貌.基于不同晶体形貌和实验结果,提出了棒状和片状COC2O4·2H2O可能的形成机理模型以解释两种形貌COC2O4·2H2O纳米晶的生长行为.","authors":[{"authorName":"胡庆华","id":"ad8cd719-a615-46e3-bf69-4b9400b87276","originalAuthorName":"胡庆华"},{"authorName":"王玺堂","id":"dc7b40a8-512c-41f6-99a6-fd3922c5dabf","originalAuthorName":"王玺堂"},{"authorName":"王周福","id":"cf0eacfb-169b-4284-a125-e5a0155fbe99","originalAuthorName":"王周福"},{"authorName":"陈浩","id":"6d256e3e-892e-4ac0-9bf2-171e00f6ae71","originalAuthorName":"陈浩"}],"doi":"","fpage":"1328","id":"3670f57d-76bb-41e2-9923-0a4665ce1577","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f3305731-946a-4cdd-9b98-bece79446b60","keyword":"热塑性酚醛树脂","originalKeyword":"热塑性酚醛树脂"},{"id":"8d7180f5-f014-4067-8a85-e144815ec43c","keyword":"COC2O4·2H2O","originalKeyword":"COC2O4·2H2O"},{"id":"9c4fc090-c4a1-4b9d-a116-785c8b0d464e","keyword":"纳米棒","originalKeyword":"纳米棒"},{"id":"7489075c-a297-4642-847e-93c39c53679a","keyword":"纳米片","originalKeyword":"纳米片"}],"language":"zh","publisherId":"rgjtxb98201105047","title":"CoC2O4·2H2O纳米晶形貌可控合成","volume":"40","year":"2011"},{"abstractinfo":"以GaO(OH)和ZnO为原料,采用高温固相法合成了ZnGa2O4荧光粉. 对样品进行了XRD及发射光谱表征. 当n(Ga):n(Zn)=2:1.2时,制得的ZnGa2O4为纯相;n(Ga):n(Zn)=2:0.9时合成的ZnGa2O4的发光性能最好,以GaO(OH)和ZnO为原料制备的ZnGa2O4,其发光强度是以α-Ga2O3或β-Ga2O3为原料制备的ZnGa2O4的发光强度的2倍.","authors":[{"authorName":"刘素琴","id":"4381df10-fbd7-4bef-aa23-f073ad386a7e","originalAuthorName":"刘素琴"},{"authorName":"李朝建","id":"63abaa86-0a31-45dd-8f2f-aa2bcaf79454","originalAuthorName":"李朝建"},{"authorName":"黄可龙","id":"c68ccae9-3f7d-4542-a7f6-29b504840094","originalAuthorName":"黄可龙"},{"authorName":"张学英","id":"fa93e920-f014-446a-a034-867e10f4d291","originalAuthorName":"张学英"},{"authorName":"全玉","id":"36182ed0-c03b-4671-93bc-7e5f33394ea0","originalAuthorName":"全玉"}],"doi":"10.3969/j.issn.1000-0518.2005.03.016","fpage":"300","id":"2e4d1729-e783-4e84-8fe0-9067ee27bf3b","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"3f2e85ea-9aee-4ade-b86b-f498b135bf29","keyword":"ZnGa2O4","originalKeyword":"ZnGa2O4"},{"id":"ac97cf8e-06d4-4c37-97ff-e853c92a3e61","keyword":"荧光","originalKeyword":"荧光"},{"id":"bee3105e-2e46-4fa9-b192-f331ccc66ec4","keyword":"固相法","originalKeyword":"固相法"}],"language":"zh","publisherId":"yyhx200503016","title":"ZnGa2O4的制备及其光学性能","volume":"22","year":"2005"},{"abstractinfo":"CoFe2O4 nanoparticles with diameter of about 5 nm were prepared at 390 degrees C by batch supercritical hydrothermal synthesis method. It was found that the characteristic of products depended on pH, temperature, mole ratio (r) of Co2+ to Fe3+ and coexisting cations in reactant solutions. The reaction time and the coexisting cations (Na+ and K+) had little effect on the size and morphology of CoFe2O4 particles. The products were a mixture of CoFe2O4 and Fe2O3 at r < 0.5 and Co1+xFe2-xO4 (0 <= X <= 1) at r >= 0.5. Pure CoFe2O4 nanoparticles with uniform size were synthesized at 390 degrees C, pH 12 and r = 0.5. The maximum coercivity and saturation magnetization of CoFe2O4 prepared by the present method were 340.6 Oe and 68.9 emu/g, respectively. The mechanism for batch supercritical hydrothermal synthesis of CoFe2O4 nanoparticles is believed to be a homogeneous phase reaction of Co(NO3)(2)center dot 6H(2)O and Fe(NO3)(3)center dot 9H(2)O aqueous solution. (c) 2007 Elsevier B.V. All rights reserved.","authors":[],"categoryName":"|","doi":"","fpage":"226","id":"7257cb61-16e4-4c1c-843e-5b21a41c89c0","issue":"2","journal":{"abbrevTitle":"JOSF","id":"76c040ae-9cad-4737-8f79-85587c0ee72b","issnPpub":"0896-8446","publisherId":"JOSF","title":"Journal of Supercritical Fluids"},"keywords":[{"id":"dd487f2b-763f-48ee-968d-0787d27a1917","keyword":"supercritical water;hydrothermal synthesis;cobalt ferrite;nanoparticles;sol-gel method;cobalt ferrite particles;manganese zinc ferrites;magnetic-properties;air oxidation;coprecipitation method;ultrafine;particles;oxide nanoparticles;aqueous suspensions;bearing ferrite","originalKeyword":"supercritical water;hydrothermal synthesis;cobalt ferrite;nanoparticles;sol-gel method;cobalt ferrite particles;manganese zinc ferrites;magnetic-properties;air oxidation;coprecipitation method;ultrafine;particles;oxide nanoparticles;aqueous suspensions;bearing ferrite"}],"language":"en","publisherId":"0896-8446_2007_2_1","title":"Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles","volume":"42","year":"2007"},{"abstractinfo":"用干法室温振动研磨方法制备纳米Zn粉,化学沉淀法制备纳米Fe3O4,纳米Zn和Fe3O4水解制备纳米ZnFe2O4.TEM和XRD检测显示经11h研磨的Zn粉粒度分布在10~20nm之间,纳米Fe3O4的粒度分布在20nm左右,水解产物纳米ZnFe2O4,形貌为方形片状,粒子尺度约为20nm.研究结果表明纳米Zn/Fe3O4摩尔比为1.5:1,反应温度为300℃是最佳反应条件,可见用振动研磨方法制备的纳米Zn颗粒具有优良的性能,能使化学反应在较低温度下快速完成,且制备方法简单易行,便于批量化生产.","authors":[{"authorName":"徐波","id":"548aa809-9fb3-403d-9abc-92e0b8b2fa1d","originalAuthorName":"徐波"},{"authorName":"王树林","id":"c6d2b604-6542-475e-9f44-d21c55bc5764","originalAuthorName":"王树林"},{"authorName":"李生娟","id":"7d3c23d2-c145-40c5-ae52-8f24b93d1bff","originalAuthorName":"李生娟"},{"authorName":"李来强","id":"83733be0-caeb-4ebd-bb7c-725801d35e55","originalAuthorName":"李来强"}],"doi":"","fpage":"1929","id":"4bdea62c-9f7a-41ba-a586-954d1496dd33","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ffce8a21-0e2d-46bd-8461-0d4b3f33e0f8","keyword":"纳米Zn","originalKeyword":"纳米Zn"},{"id":"6b76ef10-008c-473d-80b3-dd211d5041cd","keyword":"纳米Fe3O4","originalKeyword":"纳米Fe3O4"},{"id":"8844aa4b-2838-44c9-8f0b-1db3af919799","keyword":"水解反应","originalKeyword":"水解反应"},{"id":"b207f5a0-ee5b-4714-b5cf-8e7835c5d438","keyword":"纳米ZnFe2O4","originalKeyword":"纳米ZnFe2O4"}],"language":"zh","publisherId":"gncl201011020","title":"纳米Zn/Fe3O4水解制备纳米ZnFe2O4","volume":"41","year":"2010"}],"totalpage":9516,"totalrecord":95152}