{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"从热力学和扩散理论上探究了低碳钢气体渗氮氮化势对渗氮化合物层的影响.采用光学显微镜、扫描电镜、X射线衍射仪、电子探针、显微硬度计和电化学分析仪对渗氮层进行表征.结果表明:气体渗氮气氛中的氮化势对化合物层的影响规律随渗氮温度的改变有所不同.当渗氮温度不高于550℃时,高氮化势显著增加化合物层厚度;当渗氮温度不低于580℃时,尽管低氮化势延迟化合物层的形成,但化合物层一旦形成就快速增厚,且其厚度达到甚至超过高氮化势下化合物层的厚度.高氮化势渗氮化合物层中N浓度随深度降低,其最外层N浓度高达10 mass%;低氮化势渗氮化合物层中N浓度分布均匀,大约为5 mass% ~6 mass%.高氮化势渗氮化合物层的耐蚀性较好,韧性和致密性较差.低氮化势渗氮化合物层缺陷较少,韧性较高.","authors":[{"authorName":"王津","id":"ae5645b2-5614-46fc-b7d8-4ea90f486992","originalAuthorName":"王津"},{"authorName":"洪悦","id":"59f98cec-3a68-426e-b6e9-7e9b35fa6ee3","originalAuthorName":"洪悦"},{"authorName":"陈兴岩","id":"87b101e7-f7ad-4ac9-974b-4999f3a93e4e","originalAuthorName":"陈兴岩"},{"authorName":"伍翠兰","id":"d19530ed-06e6-4faa-9a28-917d59cfbe7e","originalAuthorName":"伍翠兰"}],"doi":"","fpage":"168","id":"9de3aa76-fcb1-46d9-b5f9-70c81196c077","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9ddbd462-6577-4762-81d2-5f275dbc85df","keyword":"气体渗氮","originalKeyword":"气体渗氮"},{"id":"091f67f7-4d85-4e9f-b25c-a3c5a6f90084","keyword":"氮化势","originalKeyword":"氮化势"},{"id":"54e801de-d63c-4eb1-bf77-6c503b3a4620","keyword":"化合物层","originalKeyword":"化合物层"},{"id":"4a338990-d485-43bc-b665-dba12def4241","keyword":"扩散相变","originalKeyword":"扩散相变"},{"id":"52ea81c3-7355-48cc-99ec-12ee11f1847c","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"jsrclxb201608029","title":"氮化势对低碳钢气体渗氮化合物层组织结构和性能的影响","volume":"37","year":"2016"},{"abstractinfo":"利用X射线衍射仪和透射电镜研究了稀土对40Cr钢离子渗氮化合物层结构的影响.结果表明:与普通离子渗氮相比较,稀土催渗离子渗氮化合物层中γ'相的相对含量多,且有稀土化合物CeFe2;稀土催渗离子渗氮的γ'相中存在着较多的位错环、层错和孪晶等晶体缺陷,稀土能促进晶体缺陷的形成.","authors":[{"authorName":"陈方生","id":"74c77fb2-d5ec-49aa-ac99-291cab377a51","originalAuthorName":"陈方生"},{"authorName":"刘玉先","id":"a030a13a-dce7-4260-8373-ff4eefd97be4","originalAuthorName":"刘玉先"},{"authorName":"徐军","id":"c6958812-8a81-4a91-a81a-c5cc0e37ec9c","originalAuthorName":"徐军"},{"authorName":"萧莉美","id":"14d45ceb-ab44-4da4-9f7c-72f28675c890","originalAuthorName":"萧莉美"}],"doi":"10.3969/j.issn.1004-0277.2000.03.010","fpage":"35","id":"ec9f865c-4ed3-4684-ae4f-d39721e80ce2","issue":"3","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"23b5e33d-a549-4b4f-ad6a-def415a59608","keyword":"40Cr","originalKeyword":"40Cr"},{"id":"776ee8b0-f0c2-483c-875e-799a08f4eabb","keyword":"稀土","originalKeyword":"稀土"},{"id":"7b97b80c-fd09-4682-929f-20ae93b69c68","keyword":"离子渗氮","originalKeyword":"离子渗氮"},{"id":"e0b00697-09fc-4614-a738-82f04d9b217e","keyword":"化合物层","originalKeyword":"化合物层"},{"id":"c122c8d9-fb6e-48f2-ae5c-c10cce5d267b","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"xitu200003010","title":"稀土对40Cr钢离子渗氮层结构的影响","volume":"21","year":"2000"},{"abstractinfo":"采用扫描电镜、X射线衍射(XRD)、极化曲线和显微硬度等方法研究表面离子渗氮X12Cr13马氏体不锈钢的渗氮层成分、显微组织结构、硬度以及腐蚀性能.结果表明:离子渗氮马氏体不锈钢表面形成了70μm的渗氮层,渗氮层由化合物层和扩散层组成,化合物层的组成相主要为γ-FeN和ε-FeN.离子渗氮不锈钢经过72 h纯水浸泡后表面发生点蚀.基体内部向表层的扩散降低了钢中的固溶铬含量以及渗氮层形成的孔隙和裂纹共同降低马氏体不锈钢的耐腐蚀性.","authors":[{"authorName":"李成涛","id":"15998faa-4221-46d8-b9ef-b44ae2c11e47","originalAuthorName":"李成涛"},{"authorName":"赵彦芬","id":"628b3a5c-6a3f-450b-90f5-473e0d1447a8","originalAuthorName":"赵彦芬"},{"authorName":"方可伟","id":"a331c145-3e39-4702-861c-72977c40df3b","originalAuthorName":"方可伟"},{"authorName":"赖云亭","id":"0a7ad21b-71d6-4de8-a389-719568204ef6","originalAuthorName":"赖云亭"},{"authorName":"刘艳","id":"8202505f-5dbc-4c26-9a0c-ee7e8fdaf65c","originalAuthorName":"刘艳"},{"authorName":"沈剑","id":"0159667e-59ef-4848-ac4d-e91735313312","originalAuthorName":"沈剑"},{"authorName":"张路","id":"791f21f1-b729-4510-937f-090215c1b1f5","originalAuthorName":"张路"},{"authorName":"薛飞","id":"a9fc0943-8931-49d5-b05e-a3f9254635f4","originalAuthorName":"薛飞"}],"doi":"","fpage":"210","id":"65ffc5b5-dd3b-461c-9347-ed060bc01d9b","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f7be68c8-c28e-42b3-9656-586437d17aaa","keyword":"马氏体不锈钢","originalKeyword":"马氏体不锈钢"},{"id":"0aaea016-5264-420f-9f55-1a93df885c55","keyword":"离子渗氮","originalKeyword":"离子渗氮"},{"id":"3e6f82ba-3734-48f7-b69a-c0a04aac104c","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"3c5d6925-924d-4dbe-92f6-8cdb38bb029c","keyword":"化合物层","originalKeyword":"化合物层"}],"language":"zh","publisherId":"jsrclxb201606035","title":"离子渗氮马氏体不锈钢的微观组织与腐蚀行为","volume":"37","year":"2016"},{"abstractinfo":"采用加氩渗氮和无氩渗氮两种离子渗氮方法,对用作铝合金压铸模材料的H13钢的热疲劳性能进行了比较.结果发现,无氩渗氮的化合物层对H13钢的热疲劳性能具有双重影响,一方面能推迟热疲劳裂纹的萌生,阻止热裂纹向基体内部扩展,另一方面表面裂纹直、宽、多,易于剥落并扩展快,因此,采用含化合物层的离子氮化处理H13钢铝合金压铸模应该慎重.","authors":[{"authorName":"彭文屹","id":"37321dfb-8444-414f-acee-59fee7c47504","originalAuthorName":"彭文屹"},{"authorName":"吴晓春","id":"97802eb7-885d-460e-a73e-e728512967e6","originalAuthorName":"吴晓春"},{"authorName":"闵永安","id":"7c8c5d75-d436-4af1-bb05-e1e10243da26","originalAuthorName":"闵永安"},{"authorName":"许珞萍","id":"9b81cbab-3399-4447-8036-3e8443f10d7d","originalAuthorName":"许珞萍"}],"doi":"10.3969/j.issn.1001-3660.2002.03.005","fpage":"14","id":"d2532c3c-3b41-4eab-adb5-f6351a4c0573","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d9c790e1-13b8-4fa7-b3b1-ab4d3cc9cdce","keyword":"H13钢","originalKeyword":"H13钢"},{"id":"61423445-48bf-4546-bdef-0be7926eeb5b","keyword":"离子渗氮","originalKeyword":"离子渗氮"},{"id":"a903eabf-7757-41ae-9e85-67420b34a67e","keyword":"化合物层","originalKeyword":"化合物层"},{"id":"f3b4a837-a26e-4fe4-a9c6-0d92075dffe7","keyword":"热疲劳特性","originalKeyword":"热疲劳特性"},{"id":"da2b5bdb-2030-424d-a0c2-b87b5b67a112","keyword":"铝合金压铸模","originalKeyword":"铝合金压铸模"}],"language":"zh","publisherId":"bmjs200203005","title":"H13钢铝合金压铸模的离子氮化","volume":"31","year":"2002"},{"abstractinfo":"为进一步提高渗层厚度及渗层性能,对45钢进行离子氮碳共渗与离子渗氮复合处理.采用扫描电镜、X射线衍射仪、显微硬度计和光学显微镜对渗层厚度、物相组成、截面与表面硬度、渗层脆性进行了分析.结果表明,复合处理可使45钢获得比单一离子渗氮或离子氮碳共渗更快的渗速、更优的性能.相同的处理时间下,复合处理渗层厚度比单一离子渗氮或离子氮碳共渗大幅度增加,有效硬化层比单一离子渗氮增加约35 μin,提高约1倍,同时渗层脆性显著降低.物相分析表明复合处理后化合物层中ε相和γ'相的相对含量发生了变化,即ε相增多,而γ'相减少.","authors":[{"authorName":"缪斌","id":"19cb8548-ef7f-4498-95bd-75cfe44bbeeb","originalAuthorName":"缪斌"},{"authorName":"李景才","id":"40c1d1c5-6009-4ad7-80a7-f685535c79b8","originalAuthorName":"李景才"},{"authorName":"孙泉","id":"63f6294d-6485-4f3a-9d98-690182c876da","originalAuthorName":"孙泉"},{"authorName":"沾宪宪","id":"6c4d9ddc-4e13-40ce-905e-a4b0434dc6e4","originalAuthorName":"沾宪宪"},{"authorName":"胡静","id":"0e935211-9445-44ac-a142-66e859f759ce","originalAuthorName":"胡静"}],"doi":"10.11933/j.issn.1007-9289.2016.04.004","fpage":"30","id":"9ee8bb53-d9e0-4fdd-8450-11964063d225","issue":"4","journal":{"abbrevTitle":"ZGBMGC","coverImgSrc":"journal/img/cover/ZGBMGC.jpg","id":"79","issnPpub":"1007-9289","publisherId":"ZGBMGC","title":"中国表面工程"},"keywords":[{"id":"70873a45-a01d-46c8-9b8a-d47453d07579","keyword":"离子氮碳共渗","originalKeyword":"离子氮碳共渗"},{"id":"d3be3661-17e0-4bf2-a041-9fb27f780ae8","keyword":"45钢","originalKeyword":"45钢"},{"id":"5fc19aad-d62c-4b43-b753-6998e213878d","keyword":"离子渗氮","originalKeyword":"离子渗氮"},{"id":"313c4ecc-94c2-4ac5-80b0-761121561df6","keyword":"化合物层","originalKeyword":"化合物层"},{"id":"e6d16cb3-7d8d-4d7f-bd0a-78ad129b5d47","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"zgbmgc201604004","title":"离子氮碳共渗与离子渗氮复合处理对45钢组织与性能的影响","volume":"29","year":"2016"},{"abstractinfo":"研究了压痕对未处理和氮碳共渗S38C钢试样疲劳性能的影响,并将未处理试样疲劳试验结果与Murakami模型计算结果对比,运用扫描电镜分析两类试样的断口形貌.结果表明,未处理试样疲劳强度随着压痕尺寸的增大而降低,和计算结果没有差别.氮碳共渗可将光滑试样疲劳强度提高12%,氮碳共渗试样压痕引发化合物层产生的微裂纹导致试样疲劳强度迅速下降.","authors":[{"authorName":"高杰维","id":"e0460d42-bb27-4b82-9740-c42edc068660","originalAuthorName":"高杰维"},{"authorName":"赵君文","id":"a064bb95-4038-42d4-b393-d1c1c16fae2f","originalAuthorName":"赵君文"},{"authorName":"徐磊","id":"a85a8111-e6c9-4105-924c-d8bee419579a","originalAuthorName":"徐磊"},{"authorName":"戴光泽","id":"35f7474e-fb48-4c3e-91cf-f1587055a0e8","originalAuthorName":"戴光泽"}],"doi":"","fpage":"217","id":"7302f666-683c-4087-a575-58eed9a69a00","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"ad5d4f17-1742-4182-8ca0-182a71f0a105","keyword":"S38C钢","originalKeyword":"S38C钢"},{"id":"f849b83b-375b-4ddf-aebb-ce5a2386087f","keyword":"压痕","originalKeyword":"压痕"},{"id":"4c31f001-4b3b-45a1-bbce-f72f85527562","keyword":"氮碳共渗","originalKeyword":"氮碳共渗"},{"id":"e7337dc5-7ee0-4d54-aa53-4d814368cccd","keyword":"疲劳强度","originalKeyword":"疲劳强度"},{"id":"c3adb49d-d7b0-4b60-979e-ee0d93d15443","keyword":"化合物层","originalKeyword":"化合物层"}],"language":"zh","publisherId":"jsrclxb201512037","title":"压痕对氮碳共渗S38C钢疲劳性能的影响","volume":"36","year":"2015"},{"abstractinfo":"渗氮层的脆性和耐磨性是评价其质量的重要指标.本文对25Cr2MoVA钢进行气体渗氮试验,利用X射线衍射仪、光学显微镜、显微硬度计以及磨损试验机对渗氮层进行分析,重点研究了不同工艺下渗氮层的脆性及耐磨性.结果表明,脆性级别均为1级,渗氮后的试样的耐磨性有显著提高.","authors":[{"authorName":"贾永敏","id":"39c2ff8c-1b90-4e7b-babe-c3c81a87103f","originalAuthorName":"贾永敏"},{"authorName":"肖桂勇","id":"6c6cea7f-6296-48b5-a9dd-883445b5b332","originalAuthorName":"肖桂勇"},{"authorName":"许文花","id":"96792783-a490-4683-846b-864e863e92ea","originalAuthorName":"许文花"},{"authorName":"吕宇鹏","id":"5c739e5b-217a-4b0c-88a4-8c666599fd1b","originalAuthorName":"吕宇鹏"}],"doi":"","fpage":"197","id":"9baa5fee-945a-4367-a54f-7666bd9f7260","issue":"z2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"a80b4b73-42da-4a1d-9e06-9f8f1808948d","keyword":"气体渗氮","originalKeyword":"气体渗氮"},{"id":"731101c9-d809-4bae-a3f5-edaf7a8ef8f6","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"d7b7a6d7-7d45-450f-bf7b-dd87fdf83737","keyword":"脆性","originalKeyword":"脆性"},{"id":"92e814c4-6903-4eff-a10a-a36d61c9ec2e","keyword":"化合物层","originalKeyword":"化合物层"},{"id":"37b68b3b-262f-4869-af3a-9e0e701657c9","keyword":"磨损性能","originalKeyword":"磨损性能"}],"language":"zh","publisherId":"jsrclxb2013z2041","title":"25Cr2MoVA钢气体渗氮的脆性及耐磨性","volume":"34","year":"2013"},{"abstractinfo":"本文综述了关于稀土-石墨层间化合物的研究成果和最新研究进展,着重介绍了稀土-石墨层间化合物的合成和应用前景.对石墨、稀土-石墨层间化合物在润滑、密封方面的应用作了详尽的介绍和预测.","authors":[{"authorName":"邢玉梅","id":"b1b6ccfc-be45-4d9e-9644-5e26d67e05f0","originalAuthorName":"邢玉梅"},{"authorName":"田军","id":"414b6901-faa2-49fa-bcfc-f25a47cf0c04","originalAuthorName":"田军"},{"authorName":"邵鑫","id":"798b90ae-857b-4d1f-8a9d-8297fb9d4081","originalAuthorName":"邵鑫"},{"authorName":"王丽娟","id":"af3884d1-29d3-42c5-82c5-7eefb3af383b","originalAuthorName":"王丽娟"}],"doi":"10.3969/j.issn.1004-0277.2000.06.016","fpage":"52","id":"3d8926fc-c420-405d-8560-01dadde294dd","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"93804698-7cc8-4511-aa5d-d58dc6fb557d","keyword":"稀土","originalKeyword":"稀土"},{"id":"940f0f78-87e6-4bb9-aee8-48cee8e46852","keyword":"石墨层间化合物","originalKeyword":"石墨层间化合物"},{"id":"b7bb891e-57bb-4ce8-acfe-e9ee367917a0","keyword":"合成","originalKeyword":"合成"},{"id":"06de1212-4879-4710-ae42-980621597174","keyword":"润滑","originalKeyword":"润滑"},{"id":"518b699e-9ff8-4cf6-9221-27a74f5a1820","keyword":"密封","originalKeyword":"密封"}],"language":"zh","publisherId":"xitu200006016","title":"稀土-石墨层间化合物的合成和应用前景","volume":"21","year":"2000"},{"abstractinfo":"石墨层间化合物属于21世纪的新材料--纳米材料,具有广阔的应用前景.近20年来,人们对石墨层间化合物的研究兴趣与日俱增.综述了石墨层间化合物的发展简况、合成方法及应用.概述了插层反应的影响因素.","authors":[{"authorName":"王丽娟","id":"28b84ffa-91ca-4de1-9472-09f4d3abd07b","originalAuthorName":"王丽娟"},{"authorName":"田军","id":"ac82bd7b-c005-4c70-9f92-5ba975e38b80","originalAuthorName":"田军"}],"doi":"","fpage":"52","id":"68928423-9fd9-47c2-8276-d4ca51eed364","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"87aa60dd-7b33-4c5e-b66e-62bfac54632a","keyword":"石墨","originalKeyword":"石墨"},{"id":"f8f9c530-ca39-422f-8718-c79e93f7cd09","keyword":"层间化合物","originalKeyword":"层间化合物"},{"id":"86611269-ba0b-4fea-b2ad-3268d71736a8","keyword":"合成方法","originalKeyword":"合成方法"},{"id":"4eb608d9-5107-4de2-9c58-b290498bd660","keyword":"插层反应","originalKeyword":"插层反应"}],"language":"zh","publisherId":"cldb200003020","title":"石墨层间化合物的发展、合成及应用","volume":"14","year":"2000"},{"abstractinfo":"金属间化合物基叠层复合材料是受自然界中贝壳结构的启发而设计的一种新型高温结构材料.概述了几种不同体系的金属间化合物基叠层复合材料的国内外研究现状,发现大多数的金属间化合物基叠层复合材料是以金属间化合物作为基体,以金属作为夹层来改善金属间化合物的脆性问题的.此外还对其制备工艺进行了归纳和评述,并对这类新型叠层复合材料的许多不足和发展趋势提出了初步的想法.","authors":[{"authorName":"郭鑫","id":"adcdd6dc-99da-4bb5-9800-89a3c00aea25","originalAuthorName":"郭鑫"},{"authorName":"马勤","id":"edcf1bfd-dac5-4334-a1d4-21d964b3a2fe","originalAuthorName":"马勤"},{"authorName":"季根顺","id":"aac9fe41-1723-4400-97e8-33b0e013475c","originalAuthorName":"季根顺"},{"authorName":"刘龙江","id":"47b38c0a-2331-4ced-8799-02872c3f3c7d","originalAuthorName":"刘龙江"}],"doi":"","fpage":"66","id":"4bb76fa8-ea50-4b2f-b361-9f1a100b7028","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"150b247d-96e1-4797-9e04-37ec5af33377","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"e5079292-aa8e-41d0-96c8-a285e3573120","keyword":"脆性","originalKeyword":"脆性"},{"id":"cbaf9418-2264-4161-a8a1-d6d5f995a167","keyword":"仿生结构","originalKeyword":"仿生结构"},{"id":"ac0a861d-4840-4592-8cee-73f962b45d2a","keyword":"设计","originalKeyword":"设计"},{"id":"5238f903-ab77-446d-8e6c-a34780a1fe32","keyword":"叠层复合材料","originalKeyword":"叠层复合材料"},{"id":"a10b7776-7734-4ecd-be58-1eb7a863bf28","keyword":"制备技术","originalKeyword":"制备技术"}],"language":"zh","publisherId":"cldb200706017","title":"金属间化合物基叠层复合材料研究进展","volume":"21","year":"2007"}],"totalpage":5780,"totalrecord":57799}