{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用脉冲激光溅射(PLD)法在LaAlO3(100)单晶衬底上制备了掺4.0 wt%Ag的超巨磁电阻材料La0.67Ca0.33MnO3薄膜.在氧气氛中经高温处理后薄膜显示了近室温的金属-绝缘体相变点(TMI≈300 K),与通常提高TMI的结果相比较,此工艺较好地保持了材料相变点区间的陡度,且电阻温度系数(TCR)在此区内仍达到8%.这为制造近室温磁敏感元件、自旋电子学器件、辐射热探测器等提供了重要材料.","authors":[{"authorName":"朱绍将","id":"36fdb032-20e2-4d8f-8370-985f4d7f7969","originalAuthorName":"朱绍将"},{"authorName":"刘翔","id":"529ea98d-a0ae-42ec-b553-9d0670c481b9","originalAuthorName":"刘翔"},{"authorName":"彭巨擘","id":"fedbc369-6b5c-483a-bc21-ed4f02c47813","originalAuthorName":"彭巨擘"},{"authorName":"严磊","id":"4375c9a4-05aa-4f52-96ed-5ad5220bfd95","originalAuthorName":"严磊"},{"authorName":"张鹏翔","id":"a9ab0ffd-151d-45cd-8647-cac0cc628619","originalAuthorName":"张鹏翔"}],"doi":"10.3969/j.issn.1004-0676.2003.04.010","fpage":"49","id":"5da4d299-3f3f-4943-9179-9a7270b263f8","issue":"4","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"17f4251d-f1bd-4867-978d-94690d9ff973","keyword":"低维金属材料","originalKeyword":"低维金属材料"},{"id":"5f15dd28-3219-44bd-bf76-e1d32c9b5a1b","keyword":"超巨磁电阻","originalKeyword":"超巨磁电阻"},{"id":"64be597c-e983-46b7-b076-ba3ebb3bcf7d","keyword":"金属-绝缘体相变","originalKeyword":"金属-绝缘体相变"},{"id":"b575fab0-bd4f-4471-ada5-06ed169fc57d","keyword":"电阻温度系数","originalKeyword":"电阻温度系数"}],"language":"zh","publisherId":"gjs200304010","title":"氧气氛后退火对La0.67Ca0.33MnO3-Ag薄膜性能的影响","volume":"24","year":"2003"},{"abstractinfo":"以乙酰丙酮铱为前驱体,采用金属有机化合物化学气相沉积(MOCVD)技术在石英片上沉积了Ir/C簇膜.研究了氧气流量及沉积温度对Ir/C簇膜成分和结构的影响.研究发现,少量氧气的加入(4mL/min)大幅度地降低了Ir/C簇膜中碳元素的含量;沉积温度对薄膜中碳含量的影响规律则比较复杂:未通氧气的情况下,在实验温度范围内碳含量随着温度的升高而增大,而在通入氧气的情况下碳含量呈现出先升后降的复杂变化趋势.大量碳的沉积宽化了Ir的衍射峰,使其具有非晶衍射的特征.当沉积温度为650℃,未通氧气沉积的Ir/C簇膜中铱晶粒粒经约为3nm.","authors":[{"authorName":"戴姣燕","id":"96a9d384-e421-4894-ab49-21ddf6ee013d","originalAuthorName":"戴姣燕"},{"authorName":"胡昌义","id":"5a38cd5e-2fcf-4920-ae53-113330339a69","originalAuthorName":"胡昌义"},{"authorName":"万吉高","id":"27a94c23-53ba-4c7d-ab2f-4bcde52a1126","originalAuthorName":"万吉高"},{"authorName":"方颖","id":"fed4677c-3138-4feb-aba8-abb1aee76142","originalAuthorName":"方颖"},{"authorName":"欧阳远良","id":"f2e5fad1-6896-40a2-a1ed-14ac45620c34","originalAuthorName":"欧阳远良"},{"authorName":"高文桂","id":"b314f1aa-f010-4e7b-95be-5ee91490ad78","originalAuthorName":"高文桂"},{"authorName":"刘伟平","id":"2070682e-72eb-42b5-83a7-5e99d331d727","originalAuthorName":"刘伟平"},{"authorName":"杨家明","id":"9bb63727-6bfa-4f65-a7f2-62eb66e3e284","originalAuthorName":"杨家明"}],"doi":"10.3969/j.issn.1004-0676.2006.01.005","fpage":"21","id":"a2437806-d417-49b6-ab1a-7b3ccfc15727","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"fe3e0be7-5b0c-4016-967f-aefd8448e4e6","keyword":"低维金属材料","originalKeyword":"低维金属材料"},{"id":"f5f8b451-9368-4dd9-8b23-8b5673403550","keyword":"Ir/C簇膜","originalKeyword":"Ir/C簇膜"},{"id":"0773bec9-ae13-468e-a9c4-ba01f06a5e7c","keyword":"成分","originalKeyword":"成分"},{"id":"793b0639-724e-4f85-b578-d1a2ec7af05b","keyword":"结构","originalKeyword":"结构"},{"id":"700ae91e-3808-45d7-963c-8529e2f92f0c","keyword":"金属有机化合物化学气相沉积","originalKeyword":"金属有机化合物化学气相沉积"}],"language":"zh","publisherId":"gjs200601005","title":"MOCVD法制备Ir/C簇膜的成分与结构研究","volume":"27","year":"2006"},{"abstractinfo":"采用双靶磁控溅射共沉积方法制备Cu-W薄膜,其微观结构及形貌通过XRD、TEM和SEM方法测试,结果表明,Cu-W薄膜是由Cu固溶于W或W固溶于Cu的亚稳态固溶体组成,且随着W含量的增加,Cu-W薄膜依次形成面心立方fee结构的Cu基亚稳固溶体、fee和bee结构固溶体的双相区以及体心立方bee结构的W基亚稳固溶体,晶粒尺寸随溶质原子含量的增加而减小.这些亚稳固溶体的形成是由于溅射出的原子动能足以克服Cu、W固溶所需的混合热.以及溅射过程中粒子的纳米化和成膜过程中引入的大量缺陷造成的.","authors":[{"authorName":"王瑞","id":"f24deacb-a2b8-430a-bbcf-dff1a1e89f42","originalAuthorName":"王瑞"},{"authorName":"周灵平","id":"308287bd-5bfc-445a-9501-c79e37ee77ae","originalAuthorName":"周灵平"},{"authorName":"汪明朴","id":"fb99d2b8-a197-41eb-b858-7ffc0abca89e","originalAuthorName":"汪明朴"},{"authorName":"朱家俊","id":"83f22323-5bde-4b8d-8b0a-f496c25c4450","originalAuthorName":"朱家俊"},{"authorName":"李德意","id":"566a91ac-7db3-419f-82ba-a8dde3f0e5d1","originalAuthorName":"李德意"},{"authorName":"李绍禄","id":"c94edb69-35fd-42ca-a7a2-2e77587d0e2e","originalAuthorName":"李绍禄"}],"doi":"","fpage":"582","id":"110e1503-b6b3-4023-8121-76f15e5dcb58","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"4e42e911-6868-4c1b-a6f2-964be07b4d77","keyword":"低维金属材料","originalKeyword":"低维金属材料"},{"id":"85997d66-20c2-4ae8-b7be-b6113217f874","keyword":"铜钨薄膜","originalKeyword":"铜钨薄膜"},{"id":"2c5df540-55d1-41a5-98eb-8f1428ed846c","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"b49dbbb1-80b7-495a-9bf8-aa17306fa67f","keyword":"亚稳固溶体","originalKeyword":"亚稳固溶体"}],"language":"zh","publisherId":"clkxygc200804021","title":"磁控溅射Cu-W薄膜的组织与结构","volume":"26","year":"2008"},{"abstractinfo":"报道了种子生长法合成金纳米棒.以氯金酸(HAuCl4)为原料,以硼氢化钠(NaBH4)为还原剂,首先还原金离子(Au3+)得到直径为3-4nm的金种子.以银离子(Ag+)为辅助离子,以十六烷基溴化铵(CTAB)为表面活性剂,以抗坏血酸为弱还原剂,加入金种子溶液之后可以获得纳米棒.研究表明,通过改变银离子的用量可以控制金纳米棒长径比为2-5.TEM和UV-vis光谱的表征证实了金纳米棒的形貌和光谱特征,并深入探讨了金纳米棒的生长机理.","authors":[{"authorName":"潘碧峰","id":"b7b10554-209e-4697-a49a-b70ac9debb61","originalAuthorName":"潘碧峰"},{"authorName":"崔大祥","id":"054f59da-9d71-44c5-a53a-8a98ae17faed","originalAuthorName":"崔大祥"},{"authorName":"徐萍","id":"281d25a6-2b1e-46f4-aa53-f7791500839b","originalAuthorName":"徐萍"},{"authorName":"李清","id":"23b42b6e-611a-4ec4-a225-d7b3cda600fe","originalAuthorName":"李清"},{"authorName":"黄拓","id":"189b9b2d-0660-4685-adf3-b4d2e3ee156a","originalAuthorName":"黄拓"},{"authorName":"陈浩","id":"d9bfd7fa-ec94-4dec-946c-b2be5dfef9b9","originalAuthorName":"陈浩"},{"authorName":"刘凤涛","id":"e0376d4f-3da6-4a00-839c-ab292edf140a","originalAuthorName":"刘凤涛"},{"authorName":"邵君","id":"2cdb11a8-29ed-4609-b2ef-cd3fe5bb9fc9","originalAuthorName":"邵君"},{"authorName":"尤晓刚","id":"6240f4c7-c010-4c23-a5ed-781b5a18c7d6","originalAuthorName":"尤晓刚"},{"authorName":"贺蓉","id":"800a6469-bdd1-4458-a5ba-f9ff9115ddec","originalAuthorName":"贺蓉"},{"authorName":"高峰","id":"8f7a9555-d907-4692-969d-eb02e8a65103","originalAuthorName":"高峰"}],"doi":"10.3969/j.issn.1673-2812.2007.03.003","fpage":"333","id":"4f6df05e-12e6-4f9d-a897-23a705d2e047","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d222ac5e-8ade-4efc-8ca1-0a0eb27270ce","keyword":"低维金属材料","originalKeyword":"低维金属材料"},{"id":"2a9738f7-000b-4d18-9aab-86bbb52f7f56","keyword":"金纳米棒","originalKeyword":"金纳米棒"},{"id":"bc15c872-26f1-4055-a4b0-5c7936587f09","keyword":"种子生长法","originalKeyword":"种子生长法"},{"id":"fc265140-cfed-464f-8690-ae78827c5a96","keyword":"形貌控制","originalKeyword":"形貌控制"}],"language":"zh","publisherId":"clkxygc200703003","title":"种子生长法制备长径比为2-5的金纳米棒","volume":"25","year":"2007"},{"abstractinfo":"利用高温硬度试验机对测量过程中不同试验力的保持时间,以及试验结束后停止真空泵时不同试样的温度进行对比,优化高温维氏硬度试验过程中的操作参数,确保试验机操作的合理性和数据的准确性.","authors":[{"authorName":"牛瞳","id":"4f636405-753c-44fc-83dd-1210f98858b6","originalAuthorName":"牛瞳"},{"authorName":"罗静","id":"ddab86af-7ec1-410c-91a8-386bb1fbdb6a","originalAuthorName":"罗静"}],"doi":"","fpage":"34","id":"787d7f3c-ec28-441d-867d-89fff398cd44","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"933e124a-cfda-483d-83e2-ce44ebcd14e9","keyword":"试验载荷","originalKeyword":"试验载荷"},{"id":"eb0439dc-12d1-4609-ab41-e904afb0ce6a","keyword":"试验温度","originalKeyword":"试验温度"},{"id":"85ebadd2-9506-48b1-b042-57ec44ae61b0","keyword":"真空度","originalKeyword":"真空度"}],"language":"zh","publisherId":"wlcs201303009","title":"金属材料高温维氏硬度的测量","volume":"31","year":"2013"},{"abstractinfo":"探讨了新型金属材料的现状、应用与发展,包括金属间化合物、非晶带和大块金属玻璃合金、纳米晶粒尺度的金属材料及金属基复合材料等,并对其发展远景进行了预测.对传统金属材料的现状也进行了分析讨论,认为金属材料是最重要的结构材料和功能材料.全文分两期发表.","authors":[{"authorName":"陈国良","id":"d2c9ebb6-d3bc-44c4-9a43-e40a53b7e904","originalAuthorName":"陈国良"}],"doi":"10.3969/j.issn.1001-7208.2002.04.001","fpage":"1","id":"04ce778a-9fc4-4192-900c-b9765c55008c","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"fda8b961-0a09-4a8e-8446-02b6cacf6827","keyword":"新型金属材料","originalKeyword":"新型金属材料"},{"id":"c05f538e-c1fd-43e1-960e-f9ef851d9a09","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"47648c54-c643-440d-9777-10ac243fbe88","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"226d230d-8de2-4b22-80eb-2cda28657ab7","keyword":"纳米金属","originalKeyword":"纳米金属"},{"id":"f66c3696-5937-49a0-b0f1-01b75a20494a","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"}],"language":"zh","publisherId":"shjs200204001","title":"新型金属材料(一)","volume":"24","year":"2002"},{"abstractinfo":"探讨了新型金属材料的现状、应用与发展,包括金属间化合物、非晶带和大块金属玻璃合金、纳米晶粒尺度的金属材料及金属基复合材料等,并对其发展远景进行了预测.对传统金属材料的现状也进行了分析讨论,认为金属材料是最重要的结构材料和功能材料.全文分两期发表.","authors":[{"authorName":"陈国良","id":"2ba71030-0315-45f5-8677-4e3e3a5391b9","originalAuthorName":"陈国良"}],"doi":"10.3969/j.issn.1001-7208.2002.05.001","fpage":"1","id":"3f0f8b81-4a56-4662-8e12-fd99d57eb018","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"fdc6f339-fe28-4d03-a656-0bb1c73961e6","keyword":"新型金属材料","originalKeyword":"新型金属材料"},{"id":"420b5b26-8a06-4042-914f-68bd6bd901ef","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"20788c9d-2901-4695-bd1c-2a7777041e73","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"1b861934-d176-46b8-823c-a3be714277df","keyword":"纳米金属","originalKeyword":"纳米金属"},{"id":"559dfd39-6680-4cd6-ae92-05b379fc9852","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"}],"language":"zh","publisherId":"shjs200205001","title":"新型金属材料(二)","volume":"24","year":"2002"},{"abstractinfo":"三维X射线衍射技术(3DXRD)是一种新兴的、先进的材料表征技术.该技术应用高能同步辐射X射线,可以表征块体材料的三维晶体结构和应力状态.同时测量是无损的,因此可以应用这一技术跟踪材料内部的微观组织随时间的演化(也就是四维的结构表征).高强度同步辐射X射线还保证了能够对材料内部微米级结构的衍射信息进行快速、准确地测量.这一技术最早由前丹麦国家实验室材料研究部以及欧洲同步辐射研究中心(ESRF)共同研究开发.几年之后,美国橡树岭国家实验室和美国先进光子源(APS)研究开发了另外一类3DXRD技术.目前已经可以在几个大型的同步辐射中心应用3DXRD技术,例如ESRF、APS和日本的Spring-8.综述了3DXRD技术的由来、基本原理、技术指标,以及该技术在金属材料研究中的几个应用实例.最后简要介绍该技术的最新研究进展,并对其未来在材料科学研究中的应用前景进行了展望.","authors":[{"authorName":"张玉彬","id":"5b4b6695-2aba-46db-b57d-86e117e2e433","originalAuthorName":"张玉彬"},{"authorName":"范国华","id":"8c6a2eb7-852a-43b1-8f4d-c17bd7f078d8","originalAuthorName":"范国华"}],"doi":"10.7502/j.issn.1674-3962.2017.03.04","fpage":"181","id":"e88d5700-66f5-4e87-8e6e-a9960feefeb3","issue":"3","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"be5fcae8-8e03-48e9-aca3-d4e0bf0b4848","keyword":"三维X射线衍射技术","originalKeyword":"三维X射线衍射技术"},{"id":"6cfe642f-9e30-4d7b-b9f9-051bc0a74940","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"db7b3abd-e69f-4565-9783-766b195a0795","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"476d18a7-ebca-4812-a347-3e8f5a11dc6d","keyword":"塑性形变","originalKeyword":"塑性形变"},{"id":"d540e6aa-73df-4a74-b493-e284e8a84fa2","keyword":"再结晶形核及长大","originalKeyword":"再结晶形核及长大"},{"id":"5b8d6794-824c-45e0-87a2-e17f0e07ca66","keyword":"晶粒长大","originalKeyword":"晶粒长大"},{"id":"82121aa3-255e-4dd6-81af-3903dbec403c","keyword":"局部应力/应变分析","originalKeyword":"局部应力/应变分析"}],"language":"zh","publisherId":"zgcljz201703005","title":"三维X射线衍射技术在金属材料研究中的应用","volume":"36","year":"2017"},{"abstractinfo":"通过对金属维氏硬度试验的不确定度的分析与计算,介绍一种维氏硬度试验不确定度的评定方法.","authors":[{"authorName":"苏洪英","id":"8a17d283-8fc7-4881-940d-5ab8b6431432","originalAuthorName":"苏洪英"},{"authorName":"吕丹","id":"341b5329-61f8-4c34-8c8e-9113acb05688","originalAuthorName":"吕丹"},{"authorName":"杨承波","id":"82972048-6277-44c4-b02a-dc87a286a584","originalAuthorName":"杨承波"},{"authorName":"陈洪凯","id":"5884c234-e699-4249-9c25-d88510029720","originalAuthorName":"陈洪凯"},{"authorName":"李阳","id":"797f0a59-5f12-42ad-89ff-b50235e03780","originalAuthorName":"李阳"}],"doi":"","fpage":"41","id":"8acbdba8-e09a-4b5e-98e6-0a80c770aefe","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"59afa1f4-4bac-4fb8-96e1-0a899b472a9a","keyword":"不确定度","originalKeyword":"不确定度"},{"id":"dedb25be-bf12-4b61-9efe-0ab62ac8f446","keyword":"维氏硬度试验","originalKeyword":"维氏硬度试验"},{"id":"f01f4d7b-97cc-4452-a09c-f777488672ab","keyword":"评定","originalKeyword":"评定"}],"language":"zh","publisherId":"wlcs200801011","title":"金属材料维氏硬度试验测量不确定度的评定","volume":"26","year":"2008"},{"abstractinfo":"通过对金属维氏硬度试验的不确定度的分析与计算,介绍一种维氏硬度试验不确定度的评定方法。","authors":[{"authorName":"苏洪英","id":"14748c43-4f23-4021-ab01-8847a30e340d","originalAuthorName":"苏洪英"},{"authorName":"吕丹","id":"b7d6cfd4-d436-47e5-a541-dfcd848a9209","originalAuthorName":"吕丹"},{"authorName":"杨承波","id":"8cdcde88-a185-4e4f-a642-0b1e6aa4e69c","originalAuthorName":"杨承波"},{"authorName":"陈洪凯","id":"58161bd0-7934-47a7-aad5-c461aadbdcdd","originalAuthorName":"陈洪凯"},{"authorName":"李阳","id":"6fa5318a-bfdf-4a69-b0a9-0ff8a7f842ab","originalAuthorName":"李阳"}],"categoryName":"|","doi":"","fpage":"41","id":"afb44e78-256e-4d48-a5da-68a01971296e","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"22a098df-1daf-4481-a019-96c884015ba0","keyword":"不确定度","originalKeyword":"不确定度"},{"id":"2b8e08a5-0260-400d-8880-be28edf89f92","keyword":"Vickers hardness test","originalKeyword":"Vickers hardness test"},{"id":"11d31dff-d03a-4b9e-8c64-ce73fc441e74","keyword":"evaluation","originalKeyword":"evaluation"}],"language":"zh","publisherId":"1001-0777_2008_1_5","title":"金属材料维氏硬度试验测量不确定度的评定","volume":"26","year":"2008"}],"totalpage":8336,"totalrecord":83351}