{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用低温等离子体对超高分子量聚乙烯纤维进行表面处理,以改善其与环氧树脂的粘接性能,为进一步研制高性能轻型复合材料提供科学依据。实验结果表明处理后的纤维表面能大大提高,使环氧树脂能良好地浸润纤维;纤维与环氧树脂间粘接强度可提高近5—10倍。本文进一步分析了粘接性能改善的原因,并对粘接强度做出贡献的各种作用进行了综合的定量分析。","authors":[{"authorName":"袁超廷","id":"90cab624-a868-4c0a-b0a0-c7facc476aba","originalAuthorName":"袁超廷"},{"authorName":"高尚林","id":"7ee231d6-2aa7-4f40-bd72-9bcf67c9373d","originalAuthorName":"高尚林"},{"authorName":"牟其伍","id":"8bf920cb-a8ca-4f75-b39f-96bc6f88429b","originalAuthorName":"牟其伍"},{"authorName":"丁亦平","id":"1118ea13-a095-4e42-8e45-eb6c79f4be7a","originalAuthorName":"丁亦平"}],"categoryName":"|","doi":"","fpage":"427","id":"43e4d02c-12dd-4206-af61-8c6433706be4","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"e847ed85-3ca5-4e42-bbd1-e6e3f36b5016","keyword":"低温等离子体表面处理","originalKeyword":"低温等离子体表面处理"},{"id":"b883fc6c-5cf7-400f-a9f6-66ce6477cfa7","keyword":"UHMW一PE fibres","originalKeyword":"UHMW一PE fibres"},{"id":"66708e2b-3a66-46cc-96a3-e7b16e91b86f","keyword":"adhesion strength","originalKeyword":"adhesion strength"},{"id":"b2f67577-313a-473f-a410-ba5cbc4be32e","keyword":"etching of surface","originalKeyword":"etching of surface"},{"id":"baa19c6d-55b2-429f-8aee-aa43a1d11ace","keyword":"oxygen containing grouP","originalKeyword":"oxygen containing grouP"}],"language":"zh","publisherId":"1005-3093_1992_5_4","title":"超高分子量聚乙烯纤维的等离子体表面处理","volume":"6","year":"1992"},{"abstractinfo":"研制了一种气相防锈PE管,主要由聚烯烃树脂和气相缓蚀剂以及其他添加剂组成.试验表明,本气相防锈PE管对多种金属具有优良的防锈性能,可以应用于机械设备和武器装备的身管、深孔等部位长期的防锈.","authors":[{"authorName":"李志广","id":"031edcce-e445-468f-9137-2f58f5147023","originalAuthorName":"李志广"},{"authorName":"黄红军","id":"5d6749d8-30fa-4756-be91-50726e6b53f6","originalAuthorName":"黄红军"},{"authorName":"万红敬","id":"fd3c7247-a6f9-4699-9550-169d09940f62","originalAuthorName":"万红敬"},{"authorName":"胡建伟","id":"b163ab7b-358f-4be3-9f8e-4589b182835a","originalAuthorName":"胡建伟"},{"authorName":"王晓梅","id":"5f45d922-5da3-4466-9d16-8224aa918190","originalAuthorName":"王晓梅"}],"doi":"","fpage":"237","id":"a38add08-19a4-4e44-a51c-4b58343c2780","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"2b3dcc54-2e02-49b8-8667-66442ea1b3d8","keyword":"气相","originalKeyword":"气相"},{"id":"8128f04b-793b-4a59-a14c-c23ef064f609","keyword":"防锈","originalKeyword":"防锈"},{"id":"e7a0e737-ce12-4c25-87b2-117e3f666360","keyword":"PE管","originalKeyword":"PE管"}],"language":"zh","publisherId":"fsyfh201003017","title":"一种气相防锈PE管","volume":"31","year":"2010"},{"abstractinfo":"为制备强度较高、适合反冲洗的中空纤维膜,以水相悬浮聚合法制备得到UHMWPAN,研究了引发剂用量、单体浓度、聚合温度、聚合时间、搅拌速度和聚合釜大小对聚合物分子量的影响,在此基础上确定了制备所需UHMW-PAN的合适工艺条件.","authors":[{"authorName":"沈新元","id":"5061ada2-cd54-4e11-bcaa-4a47201195c0","originalAuthorName":"沈新元"},{"authorName":"朱新远","id":"4a267477-0ed9-41a5-a29a-e0a5ef0a5fb9","originalAuthorName":"朱新远"},{"authorName":"郝建斌","id":"4748197e-2200-4007-a9a1-ab31e52f86c8","originalAuthorName":"郝建斌"},{"authorName":"王庆瑞","id":"a2869e08-5935-49b6-a9cb-3f3fe6c92a3f","originalAuthorName":"王庆瑞"}],"doi":"10.3969/j.issn.1007-8924.1998.03.007","fpage":"32","id":"8bc7f9df-8d77-46b2-8d25-6621ea79ebdb","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"a5e55421-3386-4b7e-b348-4a4a7a55c488","keyword":"中空纤维膜","originalKeyword":"中空纤维膜"},{"id":"13d046c6-254e-4392-8cf8-bc43f796cb8a","keyword":"超高分子量","originalKeyword":"超高分子量"},{"id":"127ef67f-7dbc-4093-899a-9a5a4d550e72","keyword":"聚丙烯腈","originalKeyword":"聚丙烯腈"},{"id":"b0292b50-db05-4052-832a-9cfe5cc76116","keyword":"水相悬浮聚合","originalKeyword":"水相悬浮聚合"}],"language":"zh","publisherId":"mkxyjs199803007","title":"UHMW-PAN中空纤维膜的研制及应用(Ⅰ)--UHMW-PAN的合成","volume":"18","year":"1998"},{"abstractinfo":"以超高相对分子质量聚丙烯腈(UHMW-PAN)为原料制备中空纤维膜,研究了纺丝方法和工艺条件对中空纤维膜力学性能的影响.实验表明,凝胶纺丝制备的中空纤维膜的韧性最好,其合适的工艺参数为:聚合物黏均相对分子质量Mv为1.29×106,纺丝溶液浓度C为3%,气隙长度L为3 cm,拉伸倍数R为14.","authors":[{"authorName":"沈新元","id":"bfe5b0f1-edd7-424c-a0f0-2bf77ab5097b","originalAuthorName":"沈新元"},{"authorName":"朱新远","id":"8e0a7bd3-24f1-4590-814c-b1969302fdd5","originalAuthorName":"朱新远"},{"authorName":"王庆瑞","id":"9516f93b-71c8-46e2-a7e7-73df046152be","originalAuthorName":"王庆瑞"}],"doi":"10.3969/j.issn.1007-8924.2006.02.004","fpage":"13","id":"6d18d1cb-c3ea-4e3d-9d37-b2b3319071f3","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"40db108c-2c05-4b26-9bc6-492324312210","keyword":"超高相对分子质量聚丙烯腈","originalKeyword":"超高相对分子质量聚丙烯腈"},{"id":"1392f0c7-a1b5-4aa3-a0a6-5d0b7d11de34","keyword":"凝胶纺丝","originalKeyword":"凝胶纺丝"},{"id":"844fb8b6-fb5a-46d7-808c-900fbb979045","keyword":"中空纤维膜","originalKeyword":"中空纤维膜"},{"id":"7e4a61d5-aebf-4f17-a178-bd2fef7910c8","keyword":"韧性","originalKeyword":"韧性"}],"language":"zh","publisherId":"mkxyjs200602004","title":"UHMW-PAN中空纤维膜的研制及应用(4)--UHMW-PAN中空纤维膜的制备工艺","volume":"26","year":"2006"},{"abstractinfo":"提出了一种特殊的分离螺杆结构及附属装置,用于分离熔点不同的塑料。通过正交试验的方法,以聚丙烯(PP)/高密度聚乙烯(HDPE)混合料为原料,以机头分离料的纯度和熔固产量比作为评价指标,对其分离能力和主要影响因素开展研究。研究结果表明,随机筒一、二段温度的升高,分离效果下降;转速则存在一个最佳值,大于或小于最佳值时分离效果都会下降;增大固相螺槽的压缩比可以在保持机头分离料纯度的情况下提高分离效率。","authors":[{"authorName":"吴张琪","id":"fa38de0d-4436-494b-9f8d-3a623e45f24d","originalAuthorName":"吴张琪"},{"authorName":"谢林生","id":"c97d28ef-505d-4437-99b7-abeeeb208cef","originalAuthorName":"谢林生"},{"authorName":"马玉录","id":"09f2e46c-ce81-4240-8f8a-6611d18ae17c","originalAuthorName":"马玉录"},{"authorName":"刘琥","id":"65e2eab8-6481-42bf-8766-caaab9d3162b","originalAuthorName":"刘琥"},{"authorName":"龚树云","id":"d6ad1a31-366a-44ca-8196-e8f1717924f0","originalAuthorName":"龚树云"}],"doi":"","fpage":"97","id":"8521f3ca-55a1-4de9-91a7-ccd5eb5a5320","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5f1dc93b-ead2-47bd-b014-d5e5b6eff3b2","keyword":"塑料分离","originalKeyword":"塑料分离"},{"id":"1594d253-7b2d-4ce3-ae36-ee6f7157c436","keyword":"螺杆","originalKeyword":"螺杆"},{"id":"d18067cd-8dda-4fcd-84dd-c20040cefc00","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"0548f9b5-488f-4faf-8c2a-6c9a925c6a0d","keyword":"高密度聚乙烯","originalKeyword":"高密度聚乙烯"},{"id":"fba18210-ff33-4019-8e4e-c277aee3614f","keyword":"聚丙烯","originalKeyword":"聚丙烯"}],"language":"zh","publisherId":"gfzclkxygc201212025","title":"一种利用挤出法分离废旧PP/PE混杂塑料的方法","volume":"28","year":"2012"},{"abstractinfo":"Anovel silicon containing carbon precursor was synthesised by reacting a petroleum pitchfraction and polydimethylsilane. The precursor containing about 26wt% Si was meltspunintofibresand then oxidativelystabilised in airto renderthefibresinfusiblebefore pyrolysisat1200℃underinertatmospheretoproduceC Sialloy( CSA) fibres. Theextentofstabili sation wasfoundto becriticalto the development of mechanicalstrength of thefibres which varied with heattreatmenttemperature, showing a maximum at 1200 ℃when thestrength was 1 4 1 6 GPa. Thesestrengthsareremarkably goodconsideringthelow modulus whichis duetothe quite high failurestrains. Thefibrescanshow excellentresistanceto oxidation if given an initialshortexposureto oxygen athigh temperature duetotheformation of an im perceptiblelayer of silica. CSAfibreshavethe advantagesof both carbon fibresand SiCfi bres,thusextended application areascan beenvisaged .","authors":[{"authorName":"S. Lu ","id":"c112df97-1097-42a8-a5fa-7b630a5adc51","originalAuthorName":"S. Lu "},{"authorName":" B. Rand and K. D. Bartle University of Leeds","id":"9a108ec0-73b0-4845-847e-a4e9b604ec18","originalAuthorName":" B. Rand and K. D. Bartle University of Leeds"},{"authorName":"Leeds LS2 9 JT","id":"074208ce-7090-4733-91fe-3ee6f88f578b","originalAuthorName":"Leeds LS2 9 JT"},{"authorName":" U. K.","id":"e9da78a9-4723-4d36-b66d-6dcfdf5efb26","originalAuthorName":" U. K."}],"categoryName":"|","doi":"","fpage":"480","id":"2840f7da-0e72-41b2-8efb-5021e2ed879e","issue":"4","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"987c607c-83ab-414f-86ac-7c0a5252a06c","keyword":"carbon silicon alloy fibres","originalKeyword":"carbon silicon alloy fibres"},{"id":"63dd87d8-98c3-4999-8707-e97e09b23795","keyword":"null","originalKeyword":"null"},{"id":"02349bb0-a4ee-4419-b978-5989ca734d24","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1999_4_13","title":"NOVEL OXIDATION RESISTANT CARBON SILICON ALLOY FIBRES","volume":"12","year":"1999"},{"abstractinfo":"Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.","authors":[{"authorName":"Hua-Xin PENG","id":"28cbf1cf-d09d-4054-aba1-4bc16a7b1646","originalAuthorName":"Hua-Xin PENG"}],"categoryName":"|","doi":"","fpage":"647","id":"aa02d25c-35bc-4386-b73f-63bab6e66f4c","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"3182645d-cd13-4b29-80c0-d21d820d5a14","keyword":"Titanium matrix composites","originalKeyword":"Titanium matrix composites"},{"id":"2ba7b945-af2d-4abd-8339-5e40a8e726f6","keyword":"null","originalKeyword":"null"},{"id":"abdef958-69c8-4254-a72f-3ade08f1431a","keyword":"null","originalKeyword":"null"},{"id":"0aa2d4a3-d557-46a1-8d03-eb77e3253eb2","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1005-0302_2005_5_27","title":"Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres","volume":"21","year":"2005"},{"abstractinfo":"农作物秸秆与塑料的共混材料,是一类新的木塑复合材料(WPC).光降解性是WPC的主要特征之一.本文以低密度聚乙烯(LDPE)为基体,分别与天然稻草和环氧氯丙烷改性稻草共混制成稻草/PE复合材料,在耐候试验箱中进行加速老化试验,研究材料的光降解性能.经过576 h老化,PE/天然稻草复合材料失重率约0.27%,PE/改性稻草复合材料失重率为0.22% ~0.27%,两种材料的失重率无明显差异.老化前,PE/改性稻草复合材料的力学性能优于PE/天然稻草复合材料,而老化后,前者的力学性能差于后者.拉伸断面SEM照片表明,PE在改性界面包覆性好,改性稻草在PE基体中分布均匀,紫外光对PE/改性稻草复合材料的破坏更严重,力学性能下降更显著.","authors":[{"authorName":"李光禄","id":"647db45b-b92a-4d2d-9dc8-f261ca0b66e5","originalAuthorName":"李光禄"},{"authorName":"尚妍","id":"4dcee875-cb88-44cf-bc77-984e1d41890f","originalAuthorName":"尚妍"},{"authorName":"王育红","id":"a0fd8aae-a8b6-4bb6-9939-313fc8ffbf6f","originalAuthorName":"王育红"},{"authorName":"晁月盛","id":"7950a575-33a9-4711-84b4-c28cffb8302d","originalAuthorName":"晁月盛"},{"authorName":"王林山","id":"ccbf8a0b-57fc-4c63-86a8-e8f8151f7176","originalAuthorName":"王林山"}],"doi":"","fpage":"217","id":"08f6e5eb-a803-4734-8293-a7c9e685c777","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"acc833e4-a1b2-4d3b-a2dc-ea4ba35b4846","keyword":"改性稻草","originalKeyword":"改性稻草"},{"id":"78cdbcc7-52fe-4952-9213-1b2e0abc8358","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"9174a554-eb34-44a5-9bba-5a7ed107d029","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"5dd61d56-f34c-4139-ae08-ac4b3048219d","keyword":"光降解","originalKeyword":"光降解"}],"language":"zh","publisherId":"clyyjxb201203014","title":"PE/改性稻草复合材料光降解性研究","volume":"11","year":"2012"},{"abstractinfo":"Paper-fibres are studied for use as a pore-former to produce gas channels in the anode substrates of solid oxide fuel cells (SOFCs). These fibres produce cylindrical pores within the anode substrate, which are different from the pores formed by the conventional pore-formers such as wheat flour and graphite. The cylindrical pores make it easier to connect each other to form continuous pathways for rapid gas diffusion. Paper-fibres can create more open porosity than the same amount of flour. The application of the paper-fibres significantly improves the cell performance by enhancing the gas diffusion process. The anode-supported YSZ film cells with 5 wt.-% and 10 wt.-% paper-fibres exhibit maximum power densities of 0.72 and 1.06 W cm(-2), respectively, using hydrogen as fuel and ambient air as oxidant at 800 degrees C.","authors":[],"categoryName":"|","doi":"","fpage":"172","id":"797ffbac-1eef-410c-b3af-bec75ba5fbc0","issue":"2","journal":{"abbrevTitle":"FC","id":"f53a67f0-36b4-40b8-858d-ee56e8c2c513","issnPpub":"1615-6846","publisherId":"FC","title":"Fuel Cells"},"keywords":[{"id":"5c190d17-46f6-4739-a1b7-2314092f9a26","keyword":"Cylindrical Pores;Gas Diffusion;Paper-Fibres;Pore-Former;SOFC;supported ysz films;gas-transport;performance;sofc;fabrication;polarization;electrodes;oxidation;membranes;zirconia","originalKeyword":"Cylindrical Pores;Gas Diffusion;Paper-Fibres;Pore-Former;SOFC;supported ysz films;gas-transport;performance;sofc;fabrication;polarization;electrodes;oxidation;membranes;zirconia"}],"language":"en","publisherId":"1615-6846_2011_2_1","title":"Paper-Fibres Used as a Pore-Former for Anode Substrate of Solid Oxide Fuel Cell","volume":"11","year":"2011"},{"abstractinfo":"Open-cell porous Ti with a porosity ranging from 35 to 84% was successfully manufactured by sintering titanium fibres. The microstructure of the porous titanium was observed by SEM and the compressive mechanical properties were tested. By adjusting the spiral structure of the porous titanium, the pore size can be controlled in a range of 150-600 mu m. With the increasing of the porosity, compressive yield strength and modulus decrease as predicated. However, high mechanical properties were still obtained at a medium porosity, e.g. the compressive yield strength and the modulus are as high as 100-200 MPa and 3.5-4.2 GPa, respectively, when the porosity is in the range of 50-70%. It was suggested that the porous titanium be strong enough to resist handing during implantation and in vivo loading. It is expected to be used as biocompatible implant, because their interconnected porous structures permit bone tissues ingrowth and the body fluids transportation.","authors":[],"categoryName":"|","doi":"","fpage":"401","id":"b31360f6-83d9-469d-ac59-426f95434f58","issue":"1","journal":{"abbrevTitle":"JOMSIM","id":"bcb41c71-31e1-45b3-8555-07c6f4854049","issnPpub":"0957-4530","publisherId":"JOMSIM","title":"Journal of Materials Science-Materials in Medicine"},"keywords":[{"id":"4622052f-a0a3-45be-b531-c254c33e3434","keyword":"bioactive titanium;ceramics;behavior;metal","originalKeyword":"bioactive titanium;ceramics;behavior;metal"}],"language":"en","publisherId":"0957-4530_2008_1_1","title":"Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres","volume":"19","year":"2008"}],"totalpage":7465,"totalrecord":74647}