{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"应用光学显微镜以及力学性能测试设备研究了高强度船板钢不同正火温度后的组织和性能.结果表明,正火钢的组织为多边形铁素体和珠光体,随着正火温度的提高.钢的屈服强度和抗拉强度下降,延伸率先提高后下降,正火钢的冲击韧性得到明显提高.同时应用透射电镜对正火钢析出相进行研究,探讨其强化机理.","authors":[{"authorName":"彭晟","id":"99424744-3c13-45b9-9d8f-caaa16d4e22d","originalAuthorName":"彭晟"},{"authorName":"张恒","id":"57cbc67a-7c9f-416b-8379-6b48f423bd89","originalAuthorName":"张恒华"},{"authorName":"朱松鹤","id":"f2dbd54d-b5b5-4cad-9ed2-c6be7ff640bd","originalAuthorName":"朱松鹤"},{"authorName":"邵光杰","id":"6018b8db-59ab-4cea-b3dc-786524b4f1b8","originalAuthorName":"邵光杰"},{"authorName":"许珞萍","id":"9d7a8d1a-5aa5-4b9a-9101-2aa9ca29d213","originalAuthorName":"许珞萍"},{"authorName":"朱爱玲","id":"7f932b3f-3b66-44dc-ab7b-8c4825b387ef","originalAuthorName":"朱爱玲"},{"authorName":"林国强","id":"0e59fca3-d61b-4646-a05b-a992d0e54678","originalAuthorName":"林国强"},{"authorName":"尹雨群","id":"5c20fb89-d8c9-4b2b-88d5-ae53911b61f7","originalAuthorName":"尹雨群"},{"authorName":"许俊贻","id":"43362550-37da-493c-8855-56d2fee7c7e3","originalAuthorName":"许俊贻"}],"doi":"10.3969/j.issn.1001-7208.2008.06.004","fpage":"13","id":"9d9a059b-daea-472b-ac74-2d85ab53ffc8","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"d805825c-e78d-4dc5-b876-8eb886cd35cb","keyword":"高强度船板钢","originalKeyword":"高强度船板钢"},{"id":"1392f653-3c6b-48c1-a3dc-90824a96fe80","keyword":"正火处理","originalKeyword":"正火处理"},{"id":"b4b9c4f2-22ed-4e21-88ba-1691102de9c8","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"a5c4878c-454c-4315-8190-5c073c08c7e8","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"7a6157f4-735f-4f5b-99f0-316f6226dccf","keyword":"析出强化","originalKeyword":"析出强化"}],"language":"zh","publisherId":"shjs200806004","title":"正火对高强度船板钢组织性能的影响","volume":"30","year":"2008"},{"abstractinfo":"应用光学显微镜以及力学性能测试设备研究了不同正火温度及保温时间对60mmE级厚高强度船板钢组织性能的影响.结果表明:与控轧控冷(TMCP)态钢板相比,经880~940℃正火的钢,其抗拉强度降低、延伸率提高,-40℃冲击韧性大幅度提高,这主要是由于正火处理消除魏氏组织以及细化晶粒所致.随着保温时间的延长,晶粒长大不明显.试验钢的最佳正火工艺为880~910℃ 60min的正火.","authors":[{"authorName":"曾犇","id":"42cc4d2f-37a6-4225-b31b-4f165a393b51","originalAuthorName":"曾犇"},{"authorName":"胡诗超","id":"5736f583-700b-4461-b486-e77a1dfccf84","originalAuthorName":"胡诗超"},{"authorName":"朱松鹤","id":"95e31a68-50f4-40e8-999b-0cc9276f4a63","originalAuthorName":"朱松鹤"},{"authorName":"曾伟明","id":"5d2c67ec-b907-4c95-94a3-bc435a4e7273","originalAuthorName":"曾伟明"},{"authorName":"吴静","id":"b43d1adb-5c7f-4a84-bcb3-673328df7f1a","originalAuthorName":"吴静"},{"authorName":"顾宇伟","id":"f8b86f81-e85b-4096-b7cd-055e6d9e111d","originalAuthorName":"顾宇伟"},{"authorName":"张恒","id":"8d7538e4-1efd-418d-a94f-2ef27f7ea592","originalAuthorName":"张恒华"}],"doi":"10.3969/j.issn.1001-7208.2009.06.002","fpage":"6","id":"28f6049c-c3fd-4bea-9a63-41f03afd134b","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"42b344db-506b-4531-ae3a-3578718945e9","keyword":"船板钢","originalKeyword":"船板钢"},{"id":"caefcffe-189b-44b1-8e5f-5fcec75535c8","keyword":"正火处理","originalKeyword":"正火处理"},{"id":"d61e6f6c-0a71-4f7b-bfcf-b893b4103a2c","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b6311579-87f1-45e1-8043-97b5b4758db5","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"shjs200906002","title":"正火工艺对E级厚船板钢组织和性能的影响","volume":"31","year":"2009"},{"abstractinfo":"应用改进的ANSYS软件对ZL101铝合金试样在各种不同工艺参数下(如保温时间、电流密度、频率、试样形状等)的感应加热温度及温度均匀性进行了模拟.实验发现加热毕后停留时间、线圈的电流密度、试样形状等对模拟结果有很大影响.同时在相同加热参数条件下,对模拟所得结果与感应加热的实测数据进行了比较,结果两者较为吻合,表明计算机模拟是成功的.","authors":[{"authorName":"徐霖","id":"83c126a3-1805-4f3b-a459-eda29ffed0bb","originalAuthorName":"徐霖"},{"authorName":"张恒","id":"bafbed4a-93ef-4d58-8fda-5f80a87d1783","originalAuthorName":"张恒华"},{"authorName":"邵光杰","id":"50b1d1c7-5d9e-49a4-9e64-bc8371cf35a1","originalAuthorName":"邵光杰"},{"authorName":"许珞萍","id":"5849741d-bdcc-41d9-8bc5-5d89748bcdfa","originalAuthorName":"许珞萍"},{"authorName":"余忠土","id":"623f024b-77c2-4540-ab39-90a41e9f58c4","originalAuthorName":"余忠土"}],"doi":"10.3969/j.issn.1001-7208.2002.06.001","fpage":"1","id":"0cc42ba1-8371-4cad-b8b8-522669e5a628","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"fab4130a-6244-41f7-bfec-639d99a8e555","keyword":"半固态成形技术","originalKeyword":"半固态成形技术"},{"id":"7736500c-9383-4964-a91c-01684a9025b1","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"bbd344c3-eb4a-4270-b414-aa6637964c5e","keyword":"感应加热","originalKeyword":"感应加热"},{"id":"2433379c-894b-400b-96d5-4434565eb0ff","keyword":"计算机模拟","originalKeyword":"计算机模拟"}],"language":"zh","publisherId":"shjs200206001","title":"半固态铝合金感应加热工艺参数的模拟研究","volume":"24","year":"2002"},{"abstractinfo":"利用金相显微镜观察了微合金钢在奥氏体区高温变形后等温不同时间再水淬的显微组织,并用电阻仪和显微硬度计测量了相应的电阻率和显微硬度.结果表明,变形使得晶粒细化,促进碳氮化物析出,从而提高硬度.保温初期NbCN析出物导致电阻的小幅上升,同时基体中溶质原子含量急剧减少,电阻明显下降,致使初期电阻率整体下降,之后随着碳氮化物持续长大,与基体的关系从共格到半共格直至完全非共格,产生很大畸变,电阻率呈上升趋势.","authors":[{"authorName":"陈佩丽","id":"95a8fdbb-0e4a-4f3d-8b2e-d9d13206a768","originalAuthorName":"陈佩丽"},{"authorName":"沈斌","id":"89f49f85-f17b-4e7d-8ccd-88ad2b088aa6","originalAuthorName":"沈斌"},{"authorName":"张恒","id":"4386928d-c25b-4898-a46e-94647f873e37","originalAuthorName":"张恒华"},{"authorName":"孙彩娜","id":"2a160b1b-0ef3-4248-8654-b7cb6d87e58d","originalAuthorName":"孙彩娜"}],"doi":"","fpage":"31","id":"0e4ae17d-6c2b-4315-98dc-65af94fb75b8","issue":"1","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"89f42ee7-66b4-4457-a41b-d8758d6a5d64","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"60a31807-1ad6-4b8c-a4ea-bc5f36705cb3","keyword":"变形","originalKeyword":"变形"},{"id":"52c42ac0-ce29-4487-b815-eaf6652b5b65","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"458a84ab-6448-4657-b952-e88f91208d7e","keyword":"析出相","originalKeyword":"析出相"}],"language":"zh","publisherId":"shjs201301007","title":"变形对微合金钢组织性能的影响","volume":"35","year":"2013"},{"abstractinfo":"利用ADSTEFAN 2012软件模拟了低压半固态铸造A356铝合金轮毂的充型和凝固情况,并结合模拟结果成形轮毂.对成形轮毂进行缺陷分析以验证模拟结果,得出合适的低压半固态铸造铝合金轮毂成形工艺.结果表明:低压半固态铸造A356铝合金轮毂成形的最佳铝液温度为610℃,模具温度为400℃,有利于保证充型的完整和顺序凝固.","authors":[{"authorName":"王瑞","id":"baeb4cfc-02b9-4ef3-8289-0538041f5e5a","originalAuthorName":"王瑞"},{"authorName":"朱慧","id":"c63ad65c-38b2-4a36-a631-4293e25f0862","originalAuthorName":"朱慧"},{"authorName":"张恒","id":"49da9ede-345f-4a8a-bc19-685e36a3d763","originalAuthorName":"张恒华"},{"authorName":"杨弋涛","id":"3629ec78-b7cc-40d1-b208-1d24e5fbfb1d","originalAuthorName":"杨弋涛"}],"doi":"","fpage":"47","id":"2a20b45d-0346-4aa9-84f2-2905dbc8eecc","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"0a769812-34ef-457f-9c0f-ff0b984d53bb","keyword":"A356铝合金","originalKeyword":"A356铝合金"},{"id":"2b769495-a1ca-4b83-a8ea-be9d1163fb00","keyword":"半固态","originalKeyword":"半固态"},{"id":"62332561-920a-4ccc-bd4b-62496f9311e2","keyword":"低压铸造","originalKeyword":"低压铸造"},{"id":"c7415b2b-8a38-465a-9e54-c3ae7078827e","keyword":"轮毂","originalKeyword":"轮毂"},{"id":"38f9c5f0-e180-4a5f-a713-87f4fdcc47d6","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"shjs201404012","title":"低压半固态铸造A356铝合金轮毂成形工艺的模拟与缺陷分析","volume":"36","year":"2014"},{"abstractinfo":"利用光学显微镜和H-800透射电镜研究了不同加热温度和不同保温时间下高强度船板钢奥氏体品粒长大规律.结果表明,该钢在高温加热时具有较好的抗晶粒粗化能力,奥氏体晶粒粗化温度在1250℃左右;在1100℃和1200℃保温时,奥氏体晶粒等温长大规律较好地服从抛物线型经验表达式;随着温度的升高,钢中的第二相质点逐渐减少,当加热至1250℃时,钢中仅存TiN颗粒.","authors":[{"authorName":"彭晟","id":"7719e435-1500-4122-aeb8-92f4269a2459","originalAuthorName":"彭晟"},{"authorName":"朱松鹤","id":"853ede25-cdba-4aa5-a6c9-6499e6801345","originalAuthorName":"朱松鹤"},{"authorName":"张恒","id":"e371f316-c61a-4a6c-802e-23d147ede6f5","originalAuthorName":"张恒华"},{"authorName":"邵光杰","id":"cc83b255-b97b-481b-88a9-7e1360a64e60","originalAuthorName":"邵光杰"},{"authorName":"许珞萍","id":"17792917-0443-4d9d-b654-d28ffe79d68d","originalAuthorName":"许珞萍"}],"doi":"","fpage":"72","id":"2e26a5f8-8864-4415-b42d-16a06f8c7d2f","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4801e8cb-f5a2-469c-82fd-26ef335873ec","keyword":"高强度船板钢","originalKeyword":"高强度船板钢"},{"id":"5d9d214b-4bad-41ba-b89d-fd5721e56aa7","keyword":"奥氏体晶粒长大","originalKeyword":"奥氏体晶粒长大"},{"id":"46366057-8faf-49b3-9a7c-29f2c9a67552","keyword":"抗粗化能力","originalKeyword":"抗粗化能力"},{"id":"4cfdd3e1-b3c7-47a4-8802-ab6f6d984c0b","keyword":"析出相","originalKeyword":"析出相"}],"language":"zh","publisherId":"gt200902017","title":"高强度船板钢奥氏体晶粒长大的规律","volume":"44","year":"2009"},{"abstractinfo":"采用力学分析方法,对铌钒钛复合微合金化EH40钢板性能进行了研究,结果表明,与普通16Mn钢相比,EH40钢综合性能得到明显提升.采用H-800透射电镜对钢中第二相不同阶段的析出行为进行的研究表明钢中粗大析出相为TiN颗粒,Nb和V的碳氮化物在随后的控轧控冷阶段中析出,并对各阶段析出物对材料力学性能的影响进行了探讨.","authors":[{"authorName":"朱爱玲","id":"84d3c89a-166d-47d7-ba7b-08a4c24f8535","originalAuthorName":"朱爱玲"},{"authorName":"彭晟","id":"f96bb91b-d6d5-49da-b920-f8ce0c20f51d","originalAuthorName":"彭晟"},{"authorName":"张恒","id":"d566715c-4880-46f9-bd8b-a35ea31ef485","originalAuthorName":"张恒华"},{"authorName":"朱松鹤","id":"7e5f7228-e90c-400e-9ab4-26376e82152d","originalAuthorName":"朱松鹤"},{"authorName":"邵光杰","id":"fd0ae8ba-776f-46dc-b078-55bb21b70fc1","originalAuthorName":"邵光杰"},{"authorName":"许珞萍","id":"801abfa9-1fa6-4f9c-8896-9a7f0d67fa71","originalAuthorName":"许珞萍"}],"doi":"10.3969/j.issn.1001-7208.2009.02.007","fpage":"28","id":"38c45d4f-bab0-41e5-92a1-602b8d17d56d","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"e411b813-df65-42ec-af85-56cbf9547d17","keyword":"EH40钢","originalKeyword":"EH40钢"},{"id":"38898ab5-6da5-402e-be3d-4eaf61c50843","keyword":"微合金化","originalKeyword":"微合金化"},{"id":"203714fe-a4cf-42a9-a98e-3423589c91d9","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"09e81c38-b825-49b9-8be7-16afadabecac","keyword":"析出相","originalKeyword":"析出相"}],"language":"zh","publisherId":"shjs200902007","title":"EH40钢性能及析出相的研究","volume":"31","year":"2009"},{"abstractinfo":"利用Gleeble-3500热力模拟实验机对含Nb-Ti低碳微合金钢双道次高温压缩软化行为进行了模拟研究.研究了各种变形参数对该钢软化行为的影响,建立了该钢软化行为的动力学方程.结果表明,随着道次间停留时间的延长、变形温度、变形量以及应变速率的增大,再结晶率随之增大.变形温度对奥氏体晶粒尺寸有着显著的影响,变形温度的降低将使奥氏体晶粒尺寸明显粗化;奥氏体晶粒尺寸随着道次间停留时间的延长而增大,随着变形量以及应变速率的增大而减小.","authors":[{"authorName":"朱松鹤","id":"5900a3cf-5c2d-4ce3-a39e-be6580f6e558","originalAuthorName":"朱松鹤"},{"authorName":"戴兵","id":"bc09ea44-5c5b-491d-82bb-a929f19f936b","originalAuthorName":"戴兵"},{"authorName":"张梅","id":"471dd739-a006-4a39-ab9b-3028865173fd","originalAuthorName":"张梅"},{"authorName":"卫品官","id":"60a5744f-a912-48fd-8132-380b0479b137","originalAuthorName":"卫品官"},{"authorName":"张恒","id":"e3a10354-b069-40e7-9472-4493368b69a0","originalAuthorName":"张恒华"}],"doi":"","fpage":"53","id":"4277855f-760f-4b22-8edf-88a18daa2611","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"aff6dae2-1166-4b39-a019-9dcf71ecbdbc","keyword":"含Nb-Ti低碳微合金钢","originalKeyword":"含Nb-Ti低碳微合金钢"},{"id":"51754b26-5c1e-42c5-9a8b-f314e1e9333f","keyword":"双道次热压缩","originalKeyword":"双道次热压缩"},{"id":"9ecf7a1b-b748-4ba8-be3b-f5c2fafb6b2d","keyword":"软化","originalKeyword":"软化"}],"language":"zh","publisherId":"jsrclxb201010011","title":"含Nb-Ti低碳微合金钢双道次高温压缩软化行为","volume":"31","year":"2010"},{"abstractinfo":"利用电阻加热设备对160 mm×15 ram×3 mm矩形试样进行加热后局部喷水冷却,研究试样不同位置的温度变化情况以及不同位置冷却后的组织性能变化.通过腐蚀原始奥氏体晶粒研究加热时间和电流密度对晶粒的影响.结果表明:采用电阻加热,试样温度场呈现\"中间高,两边低\"的分布规律,中间存在一定长度的均温区.电流密度一定时,最高加热温度也是一定的,且该温度随着电流密度的增加而增加.加热时间越长,电流密度越大,原始奥氏体晶粒越大.","authors":[{"authorName":"陈剑","id":"d41a7620-2894-4a89-8eb5-b864bbb2cb8b","originalAuthorName":"陈剑"},{"authorName":"张恒","id":"e60ed538-1a4f-475c-9051-0ea3a7e4b5a6","originalAuthorName":"张恒华"}],"doi":"","fpage":"51","id":"4371bded-940c-401a-9b8b-9d55cb7827d4","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"9f2cb4a1-9557-458c-a4cb-d70c3f73f158","keyword":"电阻加热","originalKeyword":"电阻加热"},{"id":"4cbb948b-2da3-48fc-96ec-469a821f27a0","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"9282f312-1646-4c81-832f-8af3e230705f","keyword":"组织","originalKeyword":"组织"},{"id":"51a3fa68-440c-430b-9651-d17cc67dcd6f","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"shjs201506011","title":"电阻加热对微合金钢组织性能影响的研究","volume":"37","year":"2015"},{"abstractinfo":"半固态触变成形过程对保证成形后零件良好的组织和性能起着至关重要的作用,通过观测半固态成形前后组织之间的联系可知,压铸过程中的成形状况和压铸前的组织特征均影响压铸后零件的组织和性能,半固态加热和压铸成形这2个阶段存在一定的联系.这些对于半固态成形的质量控制具有一定的指导意义.","authors":[{"authorName":"邵玉鹏","id":"3bca9625-b9f5-49d3-9f3c-a2638f389c20","originalAuthorName":"邵玉鹏"},{"authorName":"杨弋涛","id":"a8c72793-1916-4411-b8db-999293f07a48","originalAuthorName":"杨弋涛"},{"authorName":"尹湘林","id":"50ced7b9-73c7-4df5-b7dd-6938fcbe8f24","originalAuthorName":"尹湘林"},{"authorName":"张恒","id":"7fa11416-8588-4253-bbd5-283746a992cb","originalAuthorName":"张恒华"},{"authorName":"邵光杰","id":"1a964d8d-7f4b-436a-8188-673b1909cf0f","originalAuthorName":"邵光杰"}],"doi":"10.3969/j.issn.1001-7208.2010.04.013","fpage":"52","id":"43f6db9e-c304-4ea6-9be5-8b24f5a01978","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"f3fd9782-0c73-4917-a7e8-aefe0aaa05e1","keyword":"A356铝合金","originalKeyword":"A356铝合金"},{"id":"97ff6290-9ed0-4819-b8d7-2027e2dfbc4b","keyword":"半固态","originalKeyword":"半固态"},{"id":"63ed35f7-1cea-4b08-9a62-b7c833aed871","keyword":"触变成形","originalKeyword":"触变成形"},{"id":"0af1b77b-a069-4e81-9832-54375746daf7","keyword":"组织特征","originalKeyword":"组织特征"},{"id":"d136ec87-eff2-4d51-a93e-0337424aaabf","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"shjs201004013","title":"A356铝合金半固态成形前后组织和性能的实验分析","volume":"32","year":"2010"}],"totalpage":14,"totalrecord":132}