{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于经典叠层板理论和几何大变形理论,研究了四边固支A1质蜂窝夹芯板的非线性动力学问题.在考虑横向阻尼的影响下,利用Hamilton变分原理建立了蜂窝夹芯板受横向激振力作用时的受迫振动微分方程,通过振型正交化将蜂窝夹芯板的受迫振动微分方程简化为双模态下的动力学控制方程,同时利用Runge-Kutta法数值模拟了系统的非线性动力学行为.结果表明:由于芯层六角形胞元结构的影响,使得蜂窝夹芯板的振动对横向激振力幅值的变化非常敏感;第一阶模态下的最大振幅总要大于第二阶模态下的最大振幅,横向激振力幅值在不同的取值范围时,蜂窝夹芯板存在不同性质的动力学现象,在横向激振力幅值较小阶段,系统总是呈现单倍周期运动.当横向激振力幅值增加到一定数值时,系统呈现出从周期运动向倍周期及混沌等复杂运动形式的转换.通过相应的弯曲振动响应实验,对数值分析结果进行了实验验证.","authors":[{"authorName":"张英杰","id":"c2ad84e8-b2e4-456e-8391-3a7f46206052","originalAuthorName":"张英杰"},{"authorName":"颜云辉","id":"8d4eb15a-6edc-4909-9ede-8b5d60448251","originalAuthorName":"颜云辉"},{"authorName":"李永强","id":"885effb8-be38-4a6e-952e-851e53676f17","originalAuthorName":"李永强"},{"authorName":"李锋","id":"cbbce935-f12c-480d-be53-6ea20b8bbfd6","originalAuthorName":"李锋"}],"doi":"10.3724/SP.J.1037.2012.00235","fpage":"995","id":"1defff36-77b9-4330-bde9-9c03b8452c65","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"6bf82018-a5db-4116-8b30-7d864e817481","keyword":"蜂窝夹芯板","originalKeyword":"蜂窝夹芯板"},{"id":"ee239373-7016-430a-84d1-74ec8c0fbebd","keyword":"受迫振动","originalKeyword":"受迫振动"},{"id":"cae0d17e-9c20-4e98-a0f8-a02cf8c2a5d4","keyword":"非线性动力学","originalKeyword":"非线性动力学"},{"id":"eea986a5-8350-4304-8a3d-0a72c5927809","keyword":"混沌","originalKeyword":"混沌"}],"language":"zh","publisherId":"jsxb201208015","title":"Al质蜂窝夹芯板非线性动力学分析","volume":"48","year":"2012"},{"abstractinfo":"研究了形状记忆合金复合材料系统的非线性动力学特性.基于Brinson的形状记忆合金本构关系和Dejonghe的内耗模型,提出了单自由度简化系统的模型建立方法.考虑材料系统刚度和阻尼的变化,在弱非线性和较强非线性两种情况下给出近似-解析解法.算例表明:形状记忆合金可以作为良好的耗能材料,用于结构的被动控制. ","authors":[{"authorName":"王跃方","id":"efd67ac2-372f-4a08-a356-b4c69d75ac01","originalAuthorName":"王跃方"},{"authorName":"谷滨","id":"fcd0fd75-3bd8-49cc-b32d-599dcf06daba","originalAuthorName":"谷滨"},{"authorName":"Liew Kim Meow","id":"faaf8369-d8bc-4431-944f-e69b85e9d7f2","originalAuthorName":"Liew Kim Meow"},{"authorName":"杨大智","id":"80e0ed34-73e8-4ace-acc4-405cda6dd8eb","originalAuthorName":"杨大智"}],"doi":"10.3321/j.issn:1000-3851.2002.02.019","fpage":"94","id":"f4f55e61-7dee-468f-91f6-909f742b554d","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"508b565e-e293-48d9-ab3d-2a0b2d809f58","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"6f02f806-392e-4db7-8b09-7a53839866b2","keyword":"非线性动力学","originalKeyword":"非线性动力学"},{"id":"ba1a89ce-eab9-4077-a35f-62ed258c4bcc","keyword":"近似-解析解","originalKeyword":"近似-解析解"}],"language":"zh","publisherId":"fhclxb200202019","title":"形状记忆合金复合材料系统非线性动力学研究","volume":"19","year":"2002"},{"abstractinfo":"在沿厚度方向线性变化的温度场中,对受机械载荷作用下的四边简支功能梯度材料柱面曲板的非线性振动特性进行了分析.假设柱面曲板上表面为陶瓷层,下表面为金属层,材料特性为沿厚度方向按幂律梯度变化.在考虑几何非线性与剪切变形情况下,运用一阶剪切变形理论和Hamilton原理建立了功能梯度材料柱面曲板的非线性动力学方程.并用Galerkin法将运动控制方程离散为5个自由度的非线性动力学系统,方程中保留了面内和转动惯性项的影响,利用数值分析方法,研究了在一定横向激励作用下,不同体积分数指数对圆柱壳的非线性动力行为的影响.结果表明,随着材料体积分数指数的增加,曲板的横向振幅和振动速度渐降低.","authors":[{"authorName":"杨莉","id":"339370b8-89a8-42cb-9230-cb92742608c0","originalAuthorName":"杨莉"},{"authorName":"郝育新","id":"caf53d13-a7d5-42f0-a6f0-ad68c2472035","originalAuthorName":"郝育新"}],"doi":"","fpage":"36","id":"89e433ab-ddf0-4966-8637-e8dbddd896f1","issue":"9","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"22d7a8ae-85c2-4759-803e-8ea59cedf957","keyword":"柱面曲板","originalKeyword":"柱面曲板"},{"id":"815dfe21-dfee-41a1-b19c-b8e63ba53f42","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"051ae0ae-8180-4994-928a-e681109db45b","keyword":"非线性动力学","originalKeyword":"非线性动力学"}],"language":"zh","publisherId":"jsrclxb201309007","title":"热环境下功能梯度材料柱面曲板非线性动力学分析","volume":"34","year":"2013"},{"abstractinfo":"研究了超磁致伸缩微位移致动器的非线性动力学特性,以应用于精密机械加工的微进给系统的稀土超磁致伸缩微位移致动器设计及实验数据为基础,分析了碟簧非线性刚度对微位移致动器动力学特性的影响.","authors":[{"authorName":"孟凡兴","id":"65fdd564-fc33-4edb-a191-472c49819524","originalAuthorName":"孟凡兴"},{"authorName":"袁惠群","id":"df758151-3b33-4d50-ab99-c2430d58118d","originalAuthorName":"袁惠群"},{"authorName":"周烁","id":"bccc3831-0e84-42d6-9758-656b68b603e0","originalAuthorName":"周烁"}],"doi":"10.3969/j.issn.1671-6620.2002.01.008","fpage":"41","id":"e932cb39-1fa9-4118-b8d6-8478897fe0ab","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"9a2a6684-393f-4345-aff0-2702db4f6c3d","keyword":"超磁致伸缩材料","originalKeyword":"超磁致伸缩材料"},{"id":"8de423ba-9ef1-44cb-9f15-56e73a9d44b7","keyword":"微位移致动器","originalKeyword":"微位移致动器"},{"id":"35374a2a-24a3-4303-bd7f-30a5ede2b702","keyword":"非线性动力学","originalKeyword":"非线性动力学"}],"language":"zh","publisherId":"clyyjxb200201008","title":"稀土超磁致伸缩材料致动器的动力学特性分析","volume":"1","year":"2002"},{"abstractinfo":"低周疲劳表面裂纹演化可能具有非线性动力学特征。对1Cr18Ni9Ti光滑试样进行了低周疲劳实验,在对裂纹进行分类的基础上,将裂纹演化划分为多裂纹相互作用和局域主裂纹控制两个阶段。从非线性动力学角度给出了短裂纹的新的定义。指出裂纹演化两个阶段对材料疲劳损伤破坏过程的贡献。","authors":[{"authorName":"孙道恒","id":"3e9a4f4d-ca69-455e-8b65-4488864325ab","originalAuthorName":"孙道恒"},{"authorName":"孙训方","id":"1e59ce9d-ddd4-4dcc-82bc-446925628c18","originalAuthorName":"孙训方"},{"authorName":"刘先斌","id":"75b0313e-afaf-4f2b-9782-533217a8056e","originalAuthorName":"刘先斌"}],"doi":"10.3969/j.issn.1673-2812.2000.04.014","fpage":"61","id":"f5be14b2-2829-459b-880b-fe0008ff4637","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b30aab41-439f-4927-93dc-42f089986b76","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"abd10779-a89e-41b2-a31b-f66c47eae353","keyword":"短裂纹","originalKeyword":"短裂纹"},{"id":"6ba51c9f-1c0a-456d-b691-2fb9908d6459","keyword":"非线性动力学","originalKeyword":"非线性动力学"},{"id":"4e19c6f6-6ec5-4ab4-95f8-5d79229f5fa8","keyword":"分岔","originalKeyword":"分岔"}],"language":"zh","publisherId":"clkxygc200004014","title":"低周疲劳表面裂纹演化进程分析","volume":"18","year":"2000"},{"abstractinfo":"如何抑制纠缠突然死亡现象的发生对提高量子纠缠动力学演化性能具有极大的意义,初始纠缠原子分别与非线性N-J-C模型及J-C模型进行相互作用,运用共生纠缠的度量方法分析非线性、耦合强度以及失谐量对纠缠原子动力学演化的影响,寻找避免纠缠突然死亡发生条件.在J-C模型中原子在纠缠演化中发生纠缠突然死亡现象,然而在N-J-C模型中利用介质的非线性和失谐量的影响可以避免纠缠突然死亡的发生,而且一定程度上几乎可以恢复到原子间纠缠的初始值.","authors":[{"authorName":"杜少将","id":"2d158eb1-f182-452b-bf21-a5bcc3a97d8f","originalAuthorName":"杜少将"},{"authorName":"夏云杰","id":"e0c843ad-7249-4fbb-9170-17c53eda7f7b","originalAuthorName":"夏云杰"}],"doi":"10.3969/j.issn.1007-5461.2013.06.011","fpage":"710","id":"afde3cc0-f3ee-4f0f-a9e3-f9d921abc248","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"b727ceb1-d4f0-4bb4-b874-62201b766aa9","keyword":"量子光学","originalKeyword":"量子光学"},{"id":"bdb19ff8-09d6-4be9-b85b-3d80c5a1eaf8","keyword":"纠缠突然死亡的控制","originalKeyword":"纠缠突然死亡的控制"},{"id":"3b65e1f9-6a6c-4dda-9fe9-92001ea247b4","keyword":"共生纠缠度","originalKeyword":"共生纠缠度"},{"id":"8239e6d5-b6ab-4879-9a5f-c18576ba0119","keyword":"J-C模型","originalKeyword":"J-C模型"},{"id":"c0378eb2-5a3e-40c4-a66d-29c1c34c47bc","keyword":"N-J-C模型","originalKeyword":"N-J-C模型"}],"language":"zh","publisherId":"lzdzxb201306011","title":"线性非线性介质腔中量子纠缠动力学特征","volume":"30","year":"2013"},{"abstractinfo":"基于铝电解槽内流体体系及电磁场分布特点,建立了非线性磁流体动力学浅水模型,并应用此模型对某300 kA电解槽的熔体流场及铝液-电解质界面波动进行瞬态数值研究.在此基础上,通过动力学计算分析极距及铝液区垂直磁场对磁流体稳定性的影响.结果表明:随着极距的减小,界面波动由稳定趋向于不稳定;减小铝液区的垂直磁感应强度能大幅提高磁流体的稳定性.","authors":[{"authorName":"徐宇杰","id":"783a0bdb-0ec5-45a6-8097-1eef77010ea7","originalAuthorName":"徐宇杰"},{"authorName":"李劼","id":"07c35c1f-12d0-4bf0-a306-73a1ec291ef7","originalAuthorName":"李劼"},{"authorName":"张红亮","id":"90095378-4524-4c2c-b41f-0e03ade4f2dc","originalAuthorName":"张红亮"},{"authorName":"赖延清","id":"a533731b-afbf-445a-9957-f33711d73903","originalAuthorName":"赖延清"}],"doi":"","fpage":"191","id":"77b8d2b6-eef0-4fea-abea-62a316f441d5","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"83b1a61e-d853-40f9-82d6-109e53e6aad0","keyword":"铝电解","originalKeyword":"铝电解"},{"id":"84e1c0a6-fabe-4cf4-b289-2504ed9340bf","keyword":"磁流体动力学模型","originalKeyword":"磁流体动力学模型"},{"id":"4ced1976-7250-418c-9726-98dc384c5ef8","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"25f5a9d9-570e-4cbd-94d9-4904244b9799","keyword":"数值计算","originalKeyword":"数值计算"}],"language":"zh","publisherId":"zgysjsxb201101024","title":"基于非线性浅水模型的铝电解磁流体动力学计算","volume":"21","year":"2011"},{"abstractinfo":"研究了二元非均匀体系扩散的非线性动力学离散模型与Fick扩散定律和Cahn-Hilliard扩散方程的相关性。二元非均匀体系非线性动力学离散模型中,因原子的扩散系数与局部原子浓度强相关,扩散非对称性系数m’和有序能V是主要影响参数。采用非线性动力学离散模型和Cahn-Hilliard扩散方程分别计算了调制周期4.8 nm、9.6 nm和48 nm的Mo/V纳米多层薄膜的互扩散行为。Fick扩散定律和Cahn-Hilliard扩散方程等经典扩散定律和非线性动力学离散模型均可合理描述较大扩散尺度的扩散,随着扩散尺度的减小,经典扩散定律偏差逐渐增大,纳米尺度下的扩散需用非线性动力学离散模型描述。","authors":[{"authorName":"曹保胜","id":"bb6dee1a-7324-4436-9c06-0fdfd7196f41","originalAuthorName":"曹保胜"},{"authorName":"张志鹏","id":"76336094-a23d-43df-b5e1-8ec5b38e7d00","originalAuthorName":"张志鹏"},{"authorName":"雷明凯","id":"5a083803-2bf2-4efa-93fe-f868b99caa60","originalAuthorName":"雷明凯"}],"categoryName":"|","doi":"","fpage":"281","id":"be9cae82-bc0a-4fa7-95c8-a8ab3c49aa8d","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"be76f4ce-ba20-4504-a0cf-10d690f60e2f","keyword":"纳米扩散","originalKeyword":"纳米扩散"},{"id":"d651cfcb-e065-482a-998b-e1c048b8e4a2","keyword":"nonlinear kinetics discrete model","originalKeyword":"nonlinear kinetics discrete model"},{"id":"607776c9-0bce-4116-bcd9-ed4027ffd908","keyword":"classical diffusion Law","originalKeyword":"classical diffusion Law"}],"language":"zh","publisherId":"0412-1961_2008_3_4","title":"二元非均匀体系非线性动力学扩散模型的相关性","volume":"44","year":"2008"},{"abstractinfo":"研究了二元非均匀体系扩散的非线性动力学离散模型与Fick扩散定律和Cahn-Hilliard扩散方程的相关性.二元非均匀体系非线性动力学离散模型中,因原子的扩散系数与局部原子浓度强相关,扩散非对称性系数m'和有序能V是主要影响参数.采用非线性动力学离散模型和Cahn-Hilliard扩散方程分别计算了调制周期为4.8,9.6和48 nm的Mo/V纳米多层薄膜的互扩散行为. Fick扩散定律和Cahn-Hilliard扩散方程等经典扩散定律和非线性动力学离散模型均可合理描述较大扩散尺度的扩散,随着扩散尺度的减小,经典扩散定律偏差逐渐增大,纳米尺度下的扩散需用非线性动力学离散模型描述.","authors":[{"authorName":"曹保胜","id":"67dc8533-6b71-4123-b4a4-1db9fa76b527","originalAuthorName":"曹保胜"},{"authorName":"张志鹏","id":"ef1097c9-44d4-4f06-a677-22c0c348dfa7","originalAuthorName":"张志鹏"},{"authorName":"雷明凯","id":"1f2f1985-270b-4977-bdec-382e83e1b448","originalAuthorName":"雷明凯"}],"doi":"10.3321/j.issn:0412-1961.2008.03.005","fpage":"281","id":"bd5b3f75-de36-41f4-a28d-1e2b187afb6e","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1bcac6cd-df4c-4c32-b4ce-a6a26b2b2f8b","keyword":"二元系","originalKeyword":"二元系"},{"id":"2290e3f7-0cb3-4b42-909a-4ccc677759f1","keyword":"非均匀体系","originalKeyword":"非均匀体系"},{"id":"d48a3f8f-3a84-4469-a5d9-6ff8be47865b","keyword":"纳米扩散","originalKeyword":"纳米扩散"},{"id":"a2a68f33-ef3d-412c-907a-f02f17880438","keyword":"非线性动力学离散模型","originalKeyword":"非线性动力学离散模型"},{"id":"15344b85-81bb-44c3-828c-2f4b235f0591","keyword":"经典扩散定律","originalKeyword":"经典扩散定律"}],"language":"zh","publisherId":"jsxb200803005","title":"二元非均匀体系非线性动力学扩散模型的相关性","volume":"44","year":"2008"},{"abstractinfo":"p53-Mdm2相互作用在DNA损伤的细胞响应方面起着非常重要的作用.最新实验结果表明,在受到各种辐射损伤而引起DNA损伤后,细胞中的p53蛋白浓度在单体细胞和群体细胞情况下,表现为非衰减振荡和衰减振荡两种不同的动力学行为.通过研究p53-Mdm2负反馈回路的非线性动力学,分析了各种(特别是DNA损伤,p53和Mdm2浓度三者之间的)动力学关系,提出了一个能同时描述这两种不同动力学行为的非线性模型.","authors":[{"authorName":"晏世伟","id":"8d47f696-5b7b-4077-853d-186d312bf60b","originalAuthorName":"晏世伟"},{"authorName":"卓益忠","id":"c9857783-7662-476c-a7f4-5880dd96c657","originalAuthorName":"卓益忠"}],"doi":"10.3969/j.issn.1007-4627.2006.03.011","fpage":"315","id":"f60c211e-69a8-43e8-9414-4cc897bb41b7","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"c759f0d0-9174-4030-aa39-28481d14147c","keyword":"p53-Mdm2相互作用","originalKeyword":"p53-Mdm2相互作用"},{"id":"807d1ff4-2c9d-4d9b-8507-b06465ddd84c","keyword":"负反馈回路","originalKeyword":"负反馈回路"},{"id":"4f493790-89fa-40ca-b946-a8346a0553d0","keyword":"非衰减振荡和衰减振荡","originalKeyword":"非衰减振荡和衰减振荡"},{"id":"46de0f82-9115-4adb-93e4-1e48ac24ddb3","keyword":"非线性动力学模型","originalKeyword":"非线性动力学模型"}],"language":"zh","publisherId":"yzhwlpl200603011","title":"DNA损伤致p53-Mdm2相互作用的非线性动力学模型","volume":"23","year":"2006"}],"totalpage":3718,"totalrecord":37177}