{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文利用等离子体辅助分子束外延(P-MBE)技术在蓝宝石 (Al2O3) 衬底上生长了Mg0.12Zn0.88O(100nm)/ZnO (20nm) /Mg0.12Zn0.88O (40nm) 异质结构,测得样品的X射线衍射谱表明,在34.56°的位置出现很强的(002)方向衍射峰,其半高宽度为0.20°,比Mg0.12Zn0.88O合金薄膜的半高宽度0.15°明显展宽.通过光致发光谱研究了MgZnO/ZnO/MgZnO异质结构的光学性质,室温下测得在370nm(3.35eV)位置有很强的紫外发光,而在348nm (3.56eV)的位置处有一个较弱的发光,这两个峰分别被归结于来自ZnO层和MgZnO盖层的发光.室温下的吸收光谱中,在上述两个峰的位置附近分别存在很明显的吸收,指示了带边吸收来自于MgZnO和ZnO两种材料.通过变温发光谱研究了异质结构中载流子弛豫、复合的规律.随着温度增加,来自于ZnO层和MgZnO层的发光强度比增加,这归结为MgZnO/ZnO异质结构存在界面势垒所致.","authors":[{"authorName":"吴春霞","id":"7a566d30-93cb-4457-be21-543a4bf291ab","originalAuthorName":"吴春霞"},{"authorName":"吕有明","id":"18b8ce49-7a03-426a-bb21-a7e6f1fee330","originalAuthorName":"吕有明"},{"authorName":"李炳辉","id":"6530bb80-ed02-46a7-9b9b-cda6e6fc1eb6","originalAuthorName":"李炳辉"},{"authorName":"赵东旭","id":"f9abbc10-0f42-49ee-89fb-459c66c2acac","originalAuthorName":"赵东旭"},{"authorName":"刘益春","id":"ac0eda40-a9bc-41a6-b063-4b145efae60a","originalAuthorName":"刘益春"},{"authorName":"申德振","id":"fb1173dd-6fcf-4209-bff0-2ff33810fbdb","originalAuthorName":"申德振"},{"authorName":"张吉英","id":"8b8141b2-5c59-4f91-b97e-15e05ef58789","originalAuthorName":"张吉英"},{"authorName":"范希武","id":"aa09048c-3995-4c76-9615-45287982ecc1","originalAuthorName":"范希武"}],"doi":"10.3969/j.issn.1000-985X.2003.06.003","fpage":"550","id":"24121405-f65a-437e-a9f0-478e74fb8c96","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"49b4a8ea-0816-4031-a5ae-32b107788f20","keyword":"ZnO/MgZnO异质结构","originalKeyword":"ZnO/MgZnO异质结构"},{"id":"5bd66f7f-7eec-4e16-9ecb-1cbd2c433b1b","keyword":"P-MBE","originalKeyword":"P-MBE"},{"id":"e187536e-90c1-4bfb-949c-d2b5fbf119d0","keyword":"光致发光谱","originalKeyword":"光致发光谱"}],"language":"zh","publisherId":"rgjtxb98200306003","title":"MgZnO/ZnO异质结构的发光性质研究","volume":"32","year":"2003"},{"abstractinfo":"基于理论计算和实验,对采用MBE方法生长的不同组份的AlGaAsSb/InGaAsSb材料的应变进行了研究.结果表明,通过对材料中的As组份调节,可以对材料中的应变进行控制,达到良好的应变补偿效果,实验结果和理论计算相当吻合.","authors":[{"authorName":"唐田","id":"7280d1cd-7676-4dcd-8886-51dbc35cbe7d","originalAuthorName":"唐田"},{"authorName":"张永刚","id":"79256e90-0f2a-4de6-aec8-377c30f90d6d","originalAuthorName":"张永刚"},{"authorName":"郑燕兰","id":"38b8b09d-1259-43c5-88a8-3d8ec908f7f1","originalAuthorName":"郑燕兰"},{"authorName":"唐雄心","id":"41b22582-db89-47e7-a135-9c73ff9d5acc","originalAuthorName":"唐雄心"},{"authorName":"李爱珍","id":"6305a4ba-5854-4c08-9b12-5439b79785d9","originalAuthorName":"李爱珍"}],"doi":"10.3969/j.issn.0258-7076.2004.03.022","fpage":"530","id":"7bca9569-1e40-4aa8-af4b-d3b3d0e055e5","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"059f9277-730b-4275-b150-0f8cf4beabeb","keyword":"InGaAsSb","originalKeyword":"InGaAsSb"},{"id":"4bb7b80a-973f-47a4-8874-039e30911742","keyword":"AlGaAsSb","originalKeyword":"AlGaAsSb"},{"id":"1f5d7e10-62ad-43b9-83bd-83edf994f7b4","keyword":"应变","originalKeyword":"应变"}],"language":"zh","publisherId":"xyjs200403022","title":"MBE生长AlGaAsSb/InGaAsSb材料的应变控制","volume":"28","year":"2004"},{"abstractinfo":"采用分子束外延(MBE)技术生长的GaAs光阴极材料,按照常规方法进行高-低温两步激活时,总是出现低温灵敏度比高温低的反常现象.研究中,当激活时的系统真空度从1×10~(-7)Pa提升到1×10~(-8)Pa时,发现结果能够重新出现低温灵敏度比高温灵敏度高30%的预期规律.此外,在系统真空度为10~(-7)Pa条件下,由于变掺杂材料的表面掺杂浓度较低,其出现光电流时的首次进Cs时间也较均匀掺杂材料长,而在真空度为约10~(-9)Pa条件下,这一情况也不再明显.初步分析造成该现象的原因,是与MBE材料的掺杂元素及其低温处理特性对真空度比较敏感有关.MBE阴极激活结果受系统真空度条件影响较大,因此对MBE变掺杂光阴极的制备工艺应随系统真空度条件不同而调整.","authors":[{"authorName":"陈怀林","id":"eec43f44-9a24-428f-ac01-0b0d961de37f","originalAuthorName":"陈怀林"},{"authorName":"牛军","id":"f4d2a818-b88a-4f14-b4eb-4282686a9e53","originalAuthorName":"牛军"},{"authorName":"常本康","id":"64e9e8d7-5338-4981-8ae4-8b6cbb665d72","originalAuthorName":"常本康"}],"doi":"","fpage":"1951","id":"fd074906-a157-43f3-9392-847087efe2d9","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f88c4b17-0bb8-4d4a-afe6-f84dbd6596a1","keyword":"GaAs","originalKeyword":"GaAs"},{"id":"df3e3b4e-5efd-4adf-b99c-226a5f038bc3","keyword":"MBE","originalKeyword":"MBE"},{"id":"226edf39-0cab-4ad4-89ba-2f0156d0af48","keyword":"真空度","originalKeyword":"真空度"},{"id":"34b52cac-5a4e-41e7-9ee2-9a825cf27e6f","keyword":"激活","originalKeyword":"激活"}],"language":"zh","publisherId":"gncl200912002","title":"真空度对MBE GaAs光阴极激活结果的影响","volume":"40","year":"2009"},{"abstractinfo":"采用带有RHEED的MBE技术,利用RHEED图像演变实时监控薄膜生长状况,通过RHEED强度振荡测算薄膜生长速率,在GaAs (001)基片上同质外延GaAs薄膜.利用STM对MBE生长的GaAs薄膜表面的熟化过程进行了深入研究.研究发现,随着退火时间的延长,刚完成生长的GaAs表面从具有大量岛和坑的粗糙表面逐渐熟化,在熟化过程中岛不断合并扩大并与平台结合,而坑却逐渐消失.指出当熟化过程完成后GaAs表面将进入原子级平坦状态,并详细解释了熟化过程GaAs表面各种形貌特征形成的内在原因.","authors":[{"authorName":"王继红","id":"5f389d8c-c4e1-4929-971d-48892a2f280e","originalAuthorName":"王继红"},{"authorName":"罗子江","id":"422fbb4b-3755-4ca3-89c9-4882a490aff1","originalAuthorName":"罗子江"},{"authorName":"周勋","id":"620a9180-05f0-4a68-9dc8-b8889a9d224d","originalAuthorName":"周勋"},{"authorName":"郭祥","id":"799dab6f-a9f1-4735-86ea-8efd9a23f54f","originalAuthorName":"郭祥"},{"authorName":"周清","id":"b3b366cc-f0e7-4b2b-b029-018f02dde08f","originalAuthorName":"周清"},{"authorName":"刘珂","id":"08ac4b44-c235-4881-85e1-ec99ba3810af","originalAuthorName":"刘珂"},{"authorName":"丁召","id":"7db1c151-6f63-407e-9157-708221c54502","originalAuthorName":"丁召"}],"doi":"","fpage":"847","id":"b04d2b2d-8e13-457d-b12d-fa1458baf02b","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6ff6ee0a-11bd-4931-b9c8-27df96b078b7","keyword":"GaAs薄膜","originalKeyword":"GaAs薄膜"},{"id":"2c55d2db-e2c8-4c9d-bbed-dab8692a8a9e","keyword":"MBE","originalKeyword":"MBE"},{"id":"2ba3014a-2e79-44eb-87ce-f5f574fa1c03","keyword":"RHEED","originalKeyword":"RHEED"},{"id":"d3a7cf4a-5f0a-43bc-a92b-60b971bf7a78","keyword":"STM","originalKeyword":"STM"},{"id":"dc5028e1-345d-452e-a6e3-2c07d575c0b1","keyword":"熟化","originalKeyword":"熟化"}],"language":"zh","publisherId":"gncl201306021","title":"MBE生长GaAs(001)薄膜表面的Ostwald熟化过程研究","volume":"44","year":"2013"},{"abstractinfo":"在蓝宝石C面上利用激光分子束外延(L-MBE)的方法,分别在250℃、300℃、350℃、400℃和450℃生长了高度C轴取向的ZnO薄膜.并进行了X射线衍射(XRD)、光致发光(PL)谱的分析.测试结果表明,较低温度时,随着生长温度的升高,薄膜的结晶及发光性能得到提高;但是当温度进一步升高,却有所变差.说明利用L-MBE系统制备ZnO薄膜存在一合适的温度范围,并对此机理进行了深入分析.","authors":[{"authorName":"徐庆安","id":"64fa3f26-4d45-4e14-8e8a-29c6c07a561e","originalAuthorName":"徐庆安"},{"authorName":"张景文","id":"da0e452e-9985-42d1-b131-e9a214338aca","originalAuthorName":"张景文"},{"authorName":"杨晓东","id":"bd90a99f-04c2-428b-b4fe-a09e2d87614f","originalAuthorName":"杨晓东"},{"authorName":"巨楷如","id":"31ef9af5-5568-4d4b-afaf-0d8486bc044a","originalAuthorName":"巨楷如"},{"authorName":"贺永宁","id":"a1442c7b-3c2c-4137-9960-4f1eaf307157","originalAuthorName":"贺永宁"},{"authorName":"侯洵","id":"caa4e9ec-5cb6-4aa6-8f29-c9bd43da7ca4","originalAuthorName":"侯洵"}],"doi":"10.3969/j.issn.1000-985X.2006.02.010","fpage":"248","id":"fc083e2f-693d-43c0-8c63-e93ff5fe8f37","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"5093902c-0cce-4125-95fd-328a749dfcfc","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"3fe381d9-8efa-49f4-b8ca-fb0c0bc8efe1","keyword":"生长温度","originalKeyword":"生长温度"},{"id":"e3f7e699-8735-4af4-8605-d3ed491a674a","keyword":"激光分子束外延","originalKeyword":"激光分子束外延"},{"id":"de8350ce-a2dc-45fa-98ef-e4c5144ce487","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"11197c95-16f1-4f3d-a156-af4c223b735a","keyword":"光致发光谱","originalKeyword":"光致发光谱"}],"language":"zh","publisherId":"rgjtxb98200602010","title":"生长温度对L-MBE法制备的ZnO薄膜性能的影响","volume":"35","year":"2006"},{"abstractinfo":"利用分子束外延方法(MBE)在GaAs (001)衬底上外延生长了GaSb薄膜,并对GaSb薄膜进行了高温退火研究,利用高分辨透射电子显微镜(HRTEM)、原子力显微镜(AFM)、Hall效应(Hall Effect)和低温光荧光谱(LTPL)等手段对薄膜的晶体质量、电学性质和光学性质进行了研究.发现直接生长的GaSb膜表面平整,空穴迁移率较高.研究发现30 s、650℃的快速热退火可消除位错等缺陷,显著提高GaSb薄膜的光学质量.","authors":[{"authorName":"郝瑞亭","id":"e0d4939b-d79f-4c17-bfd1-04bd94d8dede","originalAuthorName":"郝瑞亭"},{"authorName":"郭杰","id":"53484853-ae2c-45af-b6bb-3fd45d195b53","originalAuthorName":"郭杰"},{"authorName":"刘颖","id":"6ad955bc-567a-4a0a-ad3f-45f685ddf869","originalAuthorName":"刘颖"},{"authorName":"缪彦美","id":"af9c6b4b-a525-465a-9006-af31d72e6fa0","originalAuthorName":"缪彦美"},{"authorName":"徐应强","id":"467f9f43-d9c9-49a3-8012-79a40ce28634","originalAuthorName":"徐应强"}],"doi":"","fpage":"1076","id":"32530568-569f-4a09-be36-384e68762b4b","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"6798985c-d757-429e-a36d-7a63ba44df80","keyword":"GaSb","originalKeyword":"GaSb"},{"id":"cf629fa3-67a3-45b5-9c9f-b63bacae073e","keyword":"热光伏电池","originalKeyword":"热光伏电池"},{"id":"d3608cd9-05ba-4a61-aed6-f5f124459269","keyword":"分子束外延(MBE)","originalKeyword":"分子束外延(MBE)"}],"language":"zh","publisherId":"rgjtxb98201405010","title":"GaSb/GaAs异质结热光伏电池材料的MBE生长","volume":"43","year":"2014"},{"abstractinfo":"介绍了用NH3-MBE技术在蓝宝石C面上外延的高质量的GaN单层膜以及GaN/AlN/GaN极化感应二维电子气材料.外延膜都是N面材料.形成的二维电子气是\"倒置二维电子气\".GaN 单层膜的室温电子迁移率为300cm2/Vs.二维电子气材料的迁移率为680cm2/Vs(RT)和1700cm2/Vs(77K),相应的二维电子气的面密度为3.2×1013cm-2 (RT)和2.6x1013cm-2 (77K ).","authors":[{"authorName":"孙殿照","id":"a3b7badd-418f-4320-8bc7-e1dd7762d8a4","originalAuthorName":"孙殿照"},{"authorName":"刘宏新","id":"8ed3dec8-de6d-4fb4-b5de-d2df71e08bbe","originalAuthorName":"刘宏新"},{"authorName":"王军喜","id":"324336bc-6979-4759-b7ad-40c5d7f55234","originalAuthorName":"王军喜"},{"authorName":"王晓亮","id":"8433d6a3-8fa4-4b3d-ac6c-8ce522b94ed5","originalAuthorName":"王晓亮"},{"authorName":"刘成海","id":"ba7f691d-0d16-4ddd-b240-365c268ba73a","originalAuthorName":"刘成海"},{"authorName":"曾一平","id":"20985ca6-8eef-45de-95c6-bcaf2f410972","originalAuthorName":"曾一平"},{"authorName":"李晋闽","id":"f629c071-a94e-4593-b35b-0a12e978a21b","originalAuthorName":"李晋闽"},{"authorName":"林兰英","id":"894b99d5-03f0-4cd6-91e4-457601f9ed6a","originalAuthorName":"林兰英"}],"doi":"10.3969/j.issn.1007-4252.2000.04.013","fpage":"350","id":"4702939d-2b8f-47bb-a1df-2243312beda7","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"a048a57d-ebbd-4253-944e-033b423a688f","keyword":"氮化镓","originalKeyword":"氮化镓"},{"id":"cf1e5e88-3103-48b4-8578-681eaaacafe9","keyword":"GaN","originalKeyword":"GaN"},{"id":"60e0e424-1c0f-4a73-b7ad-17f40085494c","keyword":"分子束外延","originalKeyword":"分子束外延"},{"id":"158b782c-1c8b-4ec4-a966-f8f87655dfa2","keyword":"二维电子气","originalKeyword":"二维电子气"},{"id":"5149fff4-dc6f-4af2-a440-33a71f2ca000","keyword":"极化","originalKeyword":"极化"}],"language":"zh","publisherId":"gnclyqjxb200004013","title":"NH3-MBE生长极化场二维电子气材料","volume":"6","year":"2000"},{"abstractinfo":"利用分子束外延方法(MBE)在GaAs(001)衬底上外延生长了GaSb薄膜,利用高分辨透射电子显微镜(HRTEM)、原子力显微镜(AFM)、Hall效应(Hall Effect)和低温光荧光谱(LTPL)等手段对薄膜的晶体质量、电学性能和光学质量进行了研究.发现直接生长的GaSb膜表面平整,空穴迁移率较高.引入GaSb/AlSb超晶格可有效阻断进入GaSb外延层的穿通位错,对应的PL谱强度增强,材料的光学质量变好.","authors":[{"authorName":"郝瑞亭","id":"093cafab-d421-4434-b4d6-c65759ce252c","originalAuthorName":"郝瑞亭"},{"authorName":"申兰先","id":"6d97e068-15a5-4b3d-9429-47dc1faee852","originalAuthorName":"申兰先"},{"authorName":"邓书康","id":"8c36a55c-9b76-467b-bd8c-ef50e16c0456","originalAuthorName":"邓书康"},{"authorName":"杨培志","id":"10689c6e-c8ec-4f49-9533-3f989f1f9097","originalAuthorName":"杨培志"},{"authorName":"涂洁磊","id":"5393fa0a-fcb4-433e-97ea-d7e1321985d1","originalAuthorName":"涂洁磊"},{"authorName":"廖华","id":"c83796bd-3c93-44e2-bdaa-ac1840242165","originalAuthorName":"廖华"},{"authorName":"徐应强","id":"ede7adff-d098-4c90-99b3-c346e8ab5ad6","originalAuthorName":"徐应强"},{"authorName":"牛智川","id":"649abd37-d684-44ca-b87f-23fd1f0e4fbd","originalAuthorName":"牛智川"}],"doi":"","fpage":"734","id":"82f78ef1-5155-4163-bae7-456dc987400e","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"19ebd459-120e-4fea-bb24-eba92dec661a","keyword":"GaSb","originalKeyword":"GaSb"},{"id":"d79ccf32-6230-4575-b6f4-c9891a33d9b5","keyword":"GaAs","originalKeyword":"GaAs"},{"id":"c6ba6837-fc37-4150-b298-ab0005612695","keyword":"分子束外延(MBE)","originalKeyword":"分子束外延(MBE)"}],"language":"zh","publisherId":"gncl201004051","title":"MBE方法在GaAs(001)衬底上外延生长GaSb膜","volume":"41","year":"2010"},{"abstractinfo":"采用分子束外延(MBE)法,在优化Ge衬底退火工艺的基础上,通过对比在(001)面偏<111>方向分别为0°、2°、4°和6°的Ge衬底上生长的GaAs薄膜,发现当Ge衬底的偏角为6°时有利于高质量GaAs薄膜的生长;通过改变迁移增强外延(MEE)的生长温度,发现在GaAs成核温度为375℃时,可在6°偏角的Ge衬底上获得质量最好的GaAs薄膜.通过摸索GaAs/Ge衬底上InAs量子点的生长工艺,实现了高效的InAs量子点光致发光,其性能接近GaAs衬底上直接生长的InAs量子点的水平.","authors":[{"authorName":"高晓强","id":"1fdfe59e-96a6-41e9-8409-221aae6129f7","originalAuthorName":"高晓强"},{"authorName":"王凯","id":"fb5b22c6-9990-4c72-9ee2-46e2bb874a35","originalAuthorName":"王凯"},{"authorName":"邓闯","id":"734309ca-280f-49be-a5fc-5eb24cc912d3","originalAuthorName":"邓闯"},{"authorName":"贺端威","id":"38c90c62-3248-418d-a8e1-52b246676411","originalAuthorName":"贺端威"}],"doi":"","fpage":"54","id":"92d7b0bf-24e5-41b5-9442-d1a979177838","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"fba5cea0-979a-4334-9f3c-9cff0db78704","keyword":"分子束外延","originalKeyword":"分子束外延"},{"id":"72a52932-28fa-4124-8a67-01742c7372ae","keyword":"迁移增强外延","originalKeyword":"迁移增强外延"},{"id":"66168b47-8938-4123-a8d1-5ee4f9fc2744","keyword":"InAs量子点","originalKeyword":"InAs量子点"}],"language":"zh","publisherId":"gnclyqjxb201302002","title":"Ge基GaAs薄膜和InAs量子点MBE生长研究","volume":"19","year":"2013"},{"abstractinfo":"在氧等离子体辅助的MBE系统中, 以1 nm厚的Au薄膜为催化剂, 基于气?液?固(VLS)机制实现了低温ZnO纳米线阵列在Si(111)衬底表面的生长. 通过场发射扫描电子显微镜(FE-SEM)可以观察到, ZnO纳米线阵列垂直生长在衬底上, 直径为20~30 nm. X射线衍射(XRD)和高分辨透射电镜(HRTEM)结果表明: ZnO纳米线为六方纤锌矿结构, 具有沿c轴方向的择优取向. 光致发光(PL)谱显示在380 nm附近有强烈ZnO本征发射峰, 475~650 nm可见光区域有较强的缺陷导致的发射峰.","authors":[{"authorName":"郑志远","id":"4ceec129-8a52-4ed0-b127-9263de6d195a","originalAuthorName":"郑志远"},{"authorName":"陈铁锌","id":"d22a3144-54bc-40d8-aa17-01ac31cb951c","originalAuthorName":"陈铁锌"},{"authorName":"曹亮","id":"6b67719f-bffa-4352-a119-e62ae68d2ae3","originalAuthorName":"曹亮"},{"authorName":"韩玉岩","id":"f97a8a77-6090-4ba2-b10e-9667ff9d4422","originalAuthorName":"韩玉岩"},{"authorName":"徐法强","id":"1662cfd9-9d2c-4bbb-8eee-8e05f0c643fa","originalAuthorName":"徐法强"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2012.00301","fpage":"301","id":"bdeaf6ba-fedf-4332-92d0-4852d96c663f","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5dcaac30-fc70-4bf3-a1e3-59e924b1c638","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"c1abd29c-c31f-40c0-bf48-2af544671090","keyword":" nanowire","originalKeyword":" nanowire"},{"id":"3914f6ca-24c5-44a2-ba33-f11bf56bdffe","keyword":" MBE","originalKeyword":" MBE"},{"id":"8ed1e22f-197e-4954-8cdb-c908d2120148","keyword":" VLS","originalKeyword":" VLS"}],"language":"zh","publisherId":"1000-324X_2012_3_18","title":"MBE法生长ZnO纳米线阵列的结构和光学性能","volume":"27","year":"2012"}],"totalpage":856,"totalrecord":8551}