{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"工程塑料改性环氧树脂基体的诱导相分离现象研究是了解其增韧机理的基础.通过相差显微镜,扫描电子显微镜以及同步辐射小角X光散射等方法,研究了聚砜纳米纤维膜增韧环氧树脂的反应诱导相分离过程.结果表明:该体系的相分离过程遵循的是成核-生长机理,形成海岛结构并且还是\"原位\"相分离,相分离后的聚砜微球沿着纳米纤维的\"痕迹\"有序排列.而且体系的相分离速率快于固化速率,相尺寸主要由相分离速率控制.其研究结果为进一步发展纳米纤维增韧碳纤维树脂基复合材料提供了基础数据.","authors":[{"authorName":"王秉晖","id":"e48646ef-e9df-4953-926b-1f7f35b0c0d4","originalAuthorName":"王秉晖"},{"authorName":"李刚","id":"9e817dee-d0af-4990-bb42-40f960aef465","originalAuthorName":"李刚"},{"authorName":"刘海洋","id":"2aa43a0e-010e-4dee-aea7-aed3f2e4e999","originalAuthorName":"刘海洋"},{"authorName":"黄智彬","id":"9b4ab20b-3ad7-4609-9e51-f3e779825e45","originalAuthorName":"黄智彬"},{"authorName":"隋刚","id":"34a510e4-698e-4948-bddb-c7dc2786f4b3","originalAuthorName":"隋刚"},{"authorName":"杨小平","id":"b70bd0f6-d8c2-4beb-85a1-efc568855f6e","originalAuthorName":"杨小平"}],"doi":"10.3969/j.issn.1001-4381.2008.z1.056","fpage":"270","id":"74bf83ae-6d0b-4589-976c-5f5762ea8bed","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"e37686a0-ba5a-4350-89ac-d7fac7150032","keyword":"聚砜纳米纤维膜","originalKeyword":"聚砜纳米纤维膜"},{"id":"90c95cbc-4702-4db8-bf95-717e17e324b1","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"af6cf242-61be-4fc9-8a71-2831e18f4298","keyword":"相分离","originalKeyword":"相分离"},{"id":"afe70500-80de-480e-94af-c47111c3e94d","keyword":"同步辐射小角X光散射","originalKeyword":"同步辐射小角X光散射"},{"id":"b59939c4-a913-4ad6-b3ac-05bcc5a108b9","keyword":"成核-生长机理","originalKeyword":"成核-生长机理"}],"language":"zh","publisherId":"clgc2008z1056","title":"聚砜纳米纤维膜增韧环氧树脂的反应诱导相分离过程研究","volume":"","year":"2008"},{"abstractinfo":"环氧树脂5228A固化诱导5228A/PAEK共混体系相分离,随着PAEK含量增加,固化机理成核-生长机理向旋节线分相转化,在微观相形貌上表现为海岛-双连续-相反转结构形式的转变,富PAEK热塑相在脆断作用载荷下的塑性变形以及部分富5228A热固微球结构的撕裂,预示着两相之间构建的良好界面;通过PAEK膜对CCF300/5228A复合材料“离位”增韧,重新构建了其特定的周期性微结构;动态热机械分析结果表明,“离位”增韧后复材的玻璃化转变温度略有降低,但基本不会影响原5228A基体树脂的应用温度范围;冲击试验结果表明,无论是损伤阻抗还是冲击后剩余压缩强度(CAI)均获得大幅度提高.","authors":[{"authorName":"刘立朋","id":"88e3cdbf-2ceb-4d4f-b5d7-42f0f3a93c4b","originalAuthorName":"刘立朋"},{"authorName":"张明","id":"58179e42-5a40-4c29-aa50-17f58dcd55df","originalAuthorName":"张明"},{"authorName":"安学锋","id":"1d866f6b-2bdc-4af0-85d0-df5b21ae3b17","originalAuthorName":"安学锋"},{"authorName":"周玉敬","id":"eb6f6f9f-7dcb-472c-b8d7-d6ba127b76ab","originalAuthorName":"周玉敬"},{"authorName":"唐邦路","id":"848393ae-b191-405f-ac28-100b2ca2a636","originalAuthorName":"唐邦路"},{"authorName":"益小苏","id":"02460606-0d56-4d0a-ae29-c8b9ed1fc3cc","originalAuthorName":"益小苏"}],"doi":"10.3969/j.issn.1001-4381.2010.z1.016","fpage":"77","id":"3a103e7a-cd74-447b-bfbe-feed657824f2","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"0f144cd7-172c-4b5a-9e3c-a2ee87d4517c","keyword":"成核-生长机理","originalKeyword":"成核-生长机理"},{"id":"e65b99aa-1563-4694-8d4e-4e5970719e1c","keyword":"旋节线分相","originalKeyword":"旋节线分相"},{"id":"84cbfa83-f36e-4ecd-a0f6-2e8cc43b7ae6","keyword":"“离位”增韧","originalKeyword":"“离位”增韧"},{"id":"c19dfc1e-e945-4f79-ac72-8490dfab5eee","keyword":"损伤阻抗","originalKeyword":"损伤阻抗"},{"id":"03bd4164-9c7c-4923-8a44-335abb805ec4","keyword":"冲击后剩余压缩强度","originalKeyword":"冲击后剩余压缩强度"}],"language":"zh","publisherId":"clgc2010z1016","title":"CCF300/5228A复合材料层合板“离位”增韧研究","volume":"","year":"2010"},{"abstractinfo":"硅纳米线是一种新型的一维半导体光电材料.本文较系统地介绍了硅纳米线在制备技术、生长机理方面的研究现状与最新进展,主要就激光烧蚀法、化学气相沉积法、热气相沉积法及溶液法等制备方法和基于气-液-固机理生长机理、氧化物辅助生长机理及固-液-固生长机理等作了较为详尽的论述.","authors":[{"authorName":"裴立宅","id":"48492cf1-8bef-47c0-9279-141e230f46ba","originalAuthorName":"裴立宅"},{"authorName":"唐元洪","id":"04cf7629-11d5-46e1-8b12-a725a39ac685","originalAuthorName":"唐元洪"}],"doi":"10.3969/j.issn.1673-2812.2004.06.038","fpage":"922","id":"f249eeaa-7d09-46ef-abea-a18ec1205b5f","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d5d104b5-929c-4d3b-b774-0a0cd0126d7d","keyword":"硅纳米线","originalKeyword":"硅纳米线"},{"id":"59e1ef44-f2fc-48f1-a209-7a17a73f8a27","keyword":"制备","originalKeyword":"制备"},{"id":"3bebc6a2-17aa-408a-ad1a-e226da462488","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"clkxygc200406038","title":"硅纳米线的制备与生长机理","volume":"22","year":"2004"},{"abstractinfo":"在3×10×0.5mm3的LaAlO3(001)基片上,利用直流磁控溅射生长一层厚度约为700nm的非晶态Tl2Ba2CaCu2Ox先驱薄膜.将先驱薄膜与热处理过的Tl2Ba2Ca2Cu3Oy块材(作为Tl源)一起在720~860℃温度下退火.为了研究薄膜的初期成核情况,退火时间一般为5分钟.利用XRD和完全抗磁性测试方法对样品的成相情况进行研究,结果显示,在薄膜生长的初期,较高的退火温度可以获得较大尺寸的初期生长核,但是退火温度达到860℃时,初期成核的晶粒尺寸变小.","authors":[{"authorName":"赵新杰","id":"63e0bf3b-4334-4f21-8764-ae3f2501bba0","originalAuthorName":"赵新杰"},{"authorName":"季鲁","id":"d10ec244-a5cf-47ed-ae81-c14fcbd4ebc4","originalAuthorName":"季鲁"},{"authorName":"陈恩","id":"105e5d41-ad54-405c-9cb9-e165ac5bbd95","originalAuthorName":"陈恩"},{"authorName":"左涛","id":"4bb49d8b-fc14-4262-aff6-9ac1355bc09c","originalAuthorName":"左涛"},{"authorName":"周铁戈","id":"0a8b8bce-12a3-4fb9-8c6e-4ca2a29ee335","originalAuthorName":"周铁戈"},{"authorName":"陈思","id":"ebba07ff-fe2f-4165-bd77-4bd0072c4717","originalAuthorName":"陈思"},{"authorName":"阎少林","id":"5b029910-e3db-433f-b3f7-734410f5e939","originalAuthorName":"阎少林"},{"authorName":"方兰","id":"1335997e-e58f-4c22-b4e2-d72720288001","originalAuthorName":"方兰"},{"authorName":"左旭","id":"3f94e09a-3f06-4a0b-a147-b3e58c16c735","originalAuthorName":"左旭"}],"doi":"10.3969/j.issn.1000-3258.2005.z1.047","fpage":"629","id":"e0a4480b-6db1-4a68-b12c-ba46bee1e14e","issue":"z1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"3b3dc8ce-dc7c-4c98-a969-5c626abb8cd9","keyword":"Tl-2212","originalKeyword":"Tl-2212"},{"id":"4e07de35-3dce-4f7a-8dc0-e9e4380ef4ab","keyword":"高温超导薄膜","originalKeyword":"高温超导薄膜"},{"id":"5732e65a-3eca-4f5b-8094-f44a9b4afcee","keyword":"生长机理","originalKeyword":"生长机理"},{"id":"70ff43f7-8a46-4378-a770-6a9baee9ccc2","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"dwwlxb2005z1047","title":"高温超导薄膜生长机理初探","volume":"27","year":"2005"},{"abstractinfo":"采用自发成核方法,以NaCl-Na2CO3为助熔剂,生长了毫米级的NaCo2O4晶体.通过X射线衍射对晶体作了表征.利用扫描电子显微镜和原子力显微镜研究了晶体的形貌和生长机理.结果表明:所得晶体是NaCo2O4,属于六方晶系,晶胞参数:a =b =0.2842 nm,c=1.0894 nm,V=0.0761997 nm3.NaCo2O4晶体是沿c轴层状生长的,同时从阴离子配位多面体的角度分析了晶体的形貌.","authors":[{"authorName":"韩树娟","id":"06f7687b-b2be-4ca5-aa61-d1fda353e89c","originalAuthorName":"韩树娟"},{"authorName":"王继扬","id":"f3e91ecb-bf44-4cc2-bc3f-dbc12277bef3","originalAuthorName":"王继扬"},{"authorName":"李静","id":"ba57666c-f5fb-48f6-a3a4-07169f562ef6","originalAuthorName":"李静"},{"authorName":"郭永解","id":"2a9bc191-9c84-451d-9419-f3aa887c62fc","originalAuthorName":"郭永解"},{"authorName":"王永政","id":"34d8bcef-9bae-4b52-abbf-29666b59ca5d","originalAuthorName":"王永政"},{"authorName":"赵兰玲","id":"0ced4c20-18fc-4bab-841b-4f2600cc0f42","originalAuthorName":"赵兰玲"},{"authorName":"姚淑华","id":"16a94507-3fcb-40e5-bb86-fee78c2d3ea6","originalAuthorName":"姚淑华"},{"authorName":"陈延彬","id":"3add5be7-bd6e-4c67-bb86-ca6af6fc1a6a","originalAuthorName":"陈延彬"},{"authorName":"","id":"17c7f1e6-954a-4a59-9215-3c8cf5901717","originalAuthorName":""}],"doi":"","fpage":"573","id":"818bb2b7-a37d-4b49-8ac6-42942abefa34","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"603cdefb-d9e1-42dd-8732-58e02c9d29c3","keyword":"层状化合物","originalKeyword":"层状化合物"},{"id":"870e74f9-0237-4e9e-b2fe-8e522b670c9b","keyword":"晶体生长","originalKeyword":"晶体生长"},{"id":"4180c45d-aede-4a2b-8aa2-a4d6da9de6f2","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"rgjtxb98201203007","title":"NaCo2O4晶体的生长,形貌和生长机理研究","volume":"41","year":"2012"},{"abstractinfo":"介绍了电子集成电路封装行业中常见的锡须的形状及长度.对锡须的生长机理--压应力(产生于机械操作和扩散)模型进行了总结.通过对影响锡须的生长因素的研究进展进行综述,得出如下结论:金属间化合物的形成及其与基体的相互作用促进了锡须的生长;由于在平滑的锡晶粒结构中更容易发生扩散,故增加了锡须的生长几率;镀锡层的厚度越小,形成锡须的可能性越大;在重结晶温度下,锡须更容易发生等.","authors":[{"authorName":"王先锋","id":"b4279307-6fd7-4085-bc29-7d4bbf50b84e","originalAuthorName":"王先锋"},{"authorName":"贺岩峰","id":"689ab1d7-3b6b-4dac-9df8-bf36e83259f4","originalAuthorName":"贺岩峰"}],"doi":"10.3969/j.issn.1004-227X.2005.08.015","fpage":"49","id":"2df9a7ec-509c-440d-bf04-1cac590d98f4","issue":"8","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"aa052e9f-1bfa-4a0d-8203-a17769473a65","keyword":"电子集成电路","originalKeyword":"电子集成电路"},{"id":"ad351220-b5b8-40fe-937d-8d36d04462cd","keyword":"封装","originalKeyword":"封装"},{"id":"0287ddc3-f815-4b80-851a-a8d61a3d54cc","keyword":"锡须","originalKeyword":"锡须"},{"id":"5a319e26-f487-480b-9a6c-d6dba5ae2149","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"ddyts200508015","title":"锡须生长机理的研究进展","volume":"24","year":"2005"},{"abstractinfo":"由于没有合适的衬底材料与之匹配,使外延生长的 GaN材料缺陷密度很大,从而限制了它的 \n应用。采用 LEO(横向过生长外延 )技术能使缺陷密度降低 3~ 4个数量级,可生长出高质量的 GaN \n材料。本文简要介绍了应用 LEO技术生长 GaN材料的现状及对生长机理研究的进展。","authors":[{"authorName":"魏茂林","id":"1193968c-14b6-4dc4-b571-63795fe5f5f6","originalAuthorName":"魏茂林"},{"authorName":"齐鸣","id":"085f1e79-b7eb-4b0e-be30-8b094ce181f4","originalAuthorName":"齐鸣"},{"authorName":"李爱珍","id":"e61e0f6f-e4fa-40e4-80ce-c73f1470a173","originalAuthorName":"李爱珍"}],"doi":"10.3969/j.issn.1007-4252.2001.02.020","fpage":"199","id":"a383401e-8988-429b-a1b7-c94020d3036f","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"5d97f08a-cfbd-42f7-bd83-7588d2c3f18c","keyword":"外延","originalKeyword":"外延"},{"id":"e4889b06-3cd1-43ac-88df-3821f28f4f94","keyword":"生长机理","originalKeyword":"生长机理"},{"id":"77c86500-66d9-4b09-9337-fa9e8bbcce41","keyword":"GaN","originalKeyword":"GaN"}],"language":"zh","publisherId":"gnclyqjxb200102020","title":"横向过生长 (LEO)外延 GaN材料及其生长机理","volume":"7","year":"2001"},{"abstractinfo":"研究了以Fe或Ni为催化剂采用有机物催化热解法制备的纳米炭纤维的形貌和结构.发现在两种情况下纳米炭纤维的生长机理完全不同:以Fe为催化剂纳米炭纤维基本符合气-液-固(VLS)催化生长机制(也称溶解扩散机制),而以Ni为催化剂纳米炭纤维则符合固相催化生长机制.\n","authors":[{"authorName":"苏革","id":"ca029044-d67b-4bf2-824e-c0b6af82bfb9","originalAuthorName":"苏革"},{"authorName":"杜金红","id":"d6a08436-f5ab-490e-bbe9-1404d9823051","originalAuthorName":"杜金红"},{"authorName":"范月英","id":"b8c0e09d-f58d-4482-b19d-b1c37a0d49b3","originalAuthorName":"范月英"},{"authorName":"沈祖洪","id":"c2e2d67e-95f8-4c3b-a267-d1a25eaee152","originalAuthorName":"沈祖洪"},{"authorName":"康宁","id":"b8a617e4-d445-4f15-ba14-c7d58e786243","originalAuthorName":"康宁"},{"authorName":"成会明","id":"8e3023fe-5d1c-4fdb-a16e-3e27c26967a7","originalAuthorName":"成会明"}],"doi":"10.3321/j.issn:1005-3093.2001.06.006","fpage":"623","id":"7fe888f8-7432-401a-a04b-e041c4776e19","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"1fc3baad-8418-470c-957f-7e5f179e6f4b","keyword":"纳米炭纤维","originalKeyword":"纳米炭纤维"},{"id":"8620c373-3a35-4d5a-8511-42c6f661dcb7","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"1a1cfa7b-f782-4c19-93c8-f881b75c6f56","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"clyjxb200106006","title":"用不同催化剂制备纳米炭纤维的生长机理","volume":"15","year":"2001"},{"abstractinfo":"薄膜的表面形貌与生长机理相关,因此可以通过研究薄膜表面形貌的演变来外推其生长机理。利用热蒸发法在硅片上制备了纳米多孔二氧化硅薄膜,利用扫描电镜(SEM)和 X 射线能谱(EDS)对不同样品的形貌、成分进行了表征。研究发现所制备的薄膜是由线状结构或直立的片状结构所构成的多孔结构。利用马拉高尼效应和润湿理论,对薄膜的气-液-固生长机理和氧化物辅助生长机理进行了探讨。","authors":[{"authorName":"赵丽特","id":"928d3e1f-0ad3-48c3-92c8-3483cc89a405","originalAuthorName":"赵丽特"},{"authorName":"范东华","id":"abd48f72-5e29-4a95-820f-e823efae896e","originalAuthorName":"范东华"},{"authorName":"朱慧群","id":"9984d461-ee75-48eb-b7e5-6e09471bdcc8","originalAuthorName":"朱慧群"},{"authorName":"罗坚义","id":"f0e2db10-7242-4d3a-9418-45f2ba53bae7","originalAuthorName":"罗坚义"},{"authorName":"王忆","id":"5b756d32-25a5-4e4a-bdf1-ff31edf7a8c5","originalAuthorName":"王忆"},{"authorName":"龙拥兵","id":"71cf5423-4c3f-40f4-a880-387a11ee8770","originalAuthorName":"龙拥兵"},{"authorName":"文铨","id":"4a0181d5-dee9-4f15-b695-d08d42f66cd9","originalAuthorName":"文铨"}],"doi":"10.11896/j.issn.1005-023X.2015.12.009","fpage":"37","id":"8e6bb813-267f-4ac2-96c2-de77a1023b6e","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c4dce185-8487-4f1b-b6a8-b58f9aa7b289","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"0fdf3c03-74b0-4f6d-b554-12f26af8af9b","keyword":"多孔氧化硅","originalKeyword":"多孔氧化硅"},{"id":"b6b11315-bd42-482d-81db-86a1e22d4237","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"bac634bc-a83c-4cb6-a76e-ea2f947d5a27","keyword":"纳米片","originalKeyword":"纳米片"},{"id":"3b77b5eb-35f7-4bfa-b7f2-22772307de73","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"cldb201512009","title":"从热蒸发多孔氧化硅薄膜表面形貌研究其生长机理?","volume":"","year":"2015"},{"abstractinfo":"采用沉淀法生长了不同粒径且性能良好的氧化锌纳米晶体,探讨了晶粒尺寸与煅烧温度的变化关系,研究了ZnO纳米晶体的生长机理.通过实验验证了在中间产物Zn(OH)2中加入NH4HCO3后,ZnO纳米晶体实现了局域生长,很好地阻碍了晶核的过度生长,从而使生成的ZnO纳米晶体保持很小的粒径.煅烧温度较低时,ZnO纳米晶体的生长模式为正常扩散生长,煅烧温度在800℃时,发生了竞争生长现象.","authors":[{"authorName":"张国青","id":"cd01fc0e-11fc-4406-a388-33475f9c00e6","originalAuthorName":"张国青"},{"authorName":"孙萍","id":"1c8d8fb8-a50b-45b5-bc2b-21242f20467d","originalAuthorName":"孙萍"},{"authorName":"熊波","id":"6ff2731a-f01a-443c-a6cd-a51e64e7910d","originalAuthorName":"熊波"},{"authorName":"朱柏瑾","id":"082efb2f-cc3a-42fb-8a2b-6ffe1c8ca901","originalAuthorName":"朱柏瑾"},{"authorName":"丁凤莲","id":"b434533c-9508-4e68-9987-0222c8ea11a8","originalAuthorName":"丁凤莲"}],"doi":"10.3969/j.issn.1673-2812.2006.02.031","fpage":"286","id":"43a5b084-0649-46cd-ad5f-a3fe1216363a","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7627a065-9f9e-4031-b226-dd9d8a3424fe","keyword":"ZnO纳米晶体","originalKeyword":"ZnO纳米晶体"},{"id":"116db74a-4c32-45e3-9a48-e0f024c313f9","keyword":"竞争生长","originalKeyword":"竞争生长"},{"id":"60304003-0063-41bf-99a7-ee0f742d4b7d","keyword":"热沉淀法","originalKeyword":"热沉淀法"},{"id":"c4a76dae-456a-4d53-b70a-a7743369212f","keyword":"局域生长","originalKeyword":"局域生长"}],"language":"zh","publisherId":"clkxygc200602031","title":"氧化锌纳米晶体的生长生长机理分析","volume":"24","year":"2006"}],"totalpage":2888,"totalrecord":28875}