{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以生物质木粉为原料,采用炭化.磺化法制备了固体酸催化剂,并用于油酸与甲醇的酯化反应,考察了制备条件对固体酸催化剂活性的影响.采用X射线衍射、红外光谱、热重分析、高分辨透射电子显微镜及元素分析等手段对催化剂进行了表征.结果表明,由生物质木粉制备的固体酸催化剂具有较高催化酯化反应活性,在400℃下炭化0.5h,135℃下磺化1h制备的固体酸催化剂在精馏分水连续酯化装置中催化油酸与甲醇的酯化反应2h时,酯化转化率达到96%.采用炭化-磺化法制备的生物质固体酸催化剂具有蠕虫状的无序乱层结构,磺酸(-SO_3H)含量高达13.25%,并且在220℃以下时具有良好的热稳定性.","authors":[{"authorName":"乌日娜","id":"8ce55a71-baf2-4501-980b-e83735d8a988","originalAuthorName":"乌日娜"},{"authorName":"王同华","id":"d10dad51-ac57-4506-b008-81952025542f","originalAuthorName":"王同华"},{"authorName":"修志龙","id":"2c685571-d854-458a-ada1-bd87d228c12f","originalAuthorName":"修志龙"},{"authorName":"郭峰","id":"2521766e-fa2a-4970-9aeb-73dfc8678d3f","originalAuthorName":"郭峰"},{"authorName":"潘艳秋","id":"1acf1b37-7024-401d-95a8-1e8a78ed68a2","originalAuthorName":"潘艳秋"},{"authorName":"银建中","id":"d4013741-d176-412f-8e42-2d625eb2cffe","originalAuthorName":"银建中"}],"doi":"","fpage":"1203","id":"d732f762-6cfe-459a-b650-71242c85f02c","issue":"12","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e3c40d6e-fea1-4f35-ab2c-b2c23d3a77b7","keyword":"生物质","originalKeyword":"生物质"},{"id":"c0dc209b-8a16-4d63-bf6f-51975aaafe31","keyword":"生物柴油","originalKeyword":"生物柴油"},{"id":"385a1f27-ca4c-4554-b59e-00e4a19dba71","keyword":"固体","originalKeyword":"炭基固体酸"},{"id":"874cf12a-05a5-4504-8044-0ee7fade33e0","keyword":"油酸","originalKeyword":"油酸"},{"id":"423eb9ba-f0d9-4444-ace4-77c628683edd","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"c33ebc82-cd65-48d6-a118-c363db0366da","keyword":"酯化","originalKeyword":"酯化"}],"language":"zh","publisherId":"cuihuaxb200912004","title":"生物质固体酸催化剂的制备","volume":"30","year":"2009"},{"abstractinfo":"采用磁性碳纳米管(CNTs)、葡萄糖、炼焦酚渣为碳源,制得碳固体酸催化剂.通过XRD、FTIR、13C NMR和SEM/TEM对其结构和活性基团进行表征,并且以经过预处理的微晶纤维素为纤维素模型物,以总还原糖得率为考察指标,利用制备的碳固体非均相催化水解纤维素,比较了3种碳源制得的碳固体在水解纤维素中的水解效率.研究结果表明,与传统原料葡萄糖制得的碳固体相比,酚渣固体碳环上除了含有酚羟基、羧基和磺酸外,还含有其它碳固体不具备的烷基侧链,这一结构优势对碳固体酸催化剂的催化活性具有促进作用,能够提高碳固体酸催化剂的水解效率;碳纳米管固体尽管具有致密的碳层结构、磺化后磺酸密度低,但高比表面积使其在非均相催化水解纤维素中表现出较高的活性.","authors":[{"authorName":"申曙光","id":"4afa5791-a147-4ca4-87a5-cdc3f3941b5e","originalAuthorName":"申曙光"},{"authorName":"王涛","id":"0562e32a-d814-4fb0-8cb5-3f2659f54c14","originalAuthorName":"王涛"},{"authorName":"秦海峰","id":"0b3e3189-1a66-44ef-9a14-89f2414c9877","originalAuthorName":"秦海峰"},{"authorName":"代光","id":"953f7fe0-c08e-41e5-bd05-436dd258d627","originalAuthorName":"代光"},{"authorName":"李焕梅","id":"504cc1ec-266c-4a96-aa31-ebc2cb6108d1","originalAuthorName":"李焕梅"}],"doi":"","fpage":"1598","id":"86bf8874-bdae-4165-81b3-19e7717e3e45","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"75f5c7f5-ec66-447a-bf67-2fd0eb1b2df5","keyword":"碳固体","originalKeyword":"碳基固体酸"},{"id":"8f8bd6a5-933c-4207-9c6e-9fe146879d92","keyword":"水解纤维素","originalKeyword":"水解纤维素"},{"id":"74b1b90d-f3c8-4de0-a0e4-c39e4f94c492","keyword":"非均相催化","originalKeyword":"非均相催化"},{"id":"6c86f417-7010-4431-a511-51c995f3cee6","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"402e41fa-00b6-4beb-9a2e-a3186d483f41","keyword":"酚渣","originalKeyword":"酚渣"}],"language":"zh","publisherId":"gncl201212022","title":"不同碳源制备碳固体及其在水解纤维素中的应用","volume":"43","year":"2012"},{"abstractinfo":"以热解稻壳为原料,浓硫酸为磺化剂制备了固体酸催化剂.采用X射线衍射、X射线光电子能谱、元素分析、孔结构分析和热重-质谱联用等手段对其进行了表征.以油酸和甲醇的酯化为探针反应,考察了磺化温度和时间对催化剂活性的影响,探讨了反应条件对油酸转化率的影响,并对所制催化剂的稳定性进行了研究.结果表明,制备该催化剂的适宜磺化温度和时间分别为90℃和0.25 h,在该条件下制得的催化剂为无定形碳结构,磺酸密度为0.7 mmol/g.该催化剂表现出较高的催化酯化反应活性,在催化剂用量为5%、甲醇/油酸摩尔比为4、酯化温度和时间分别为1 10℃和2h的条件下,油酸的酯化率可达98.7%.该催化剂具有较好的稳定性,经7次连续反应后,油酸的酯化率仍可达96.0%.","authors":[{"authorName":"李明","id":"d1888b91-e87f-45cc-a0e7-fa739e8cf64f","originalAuthorName":"李明"},{"authorName":"陈登宇","id":"3bbb4d9b-f6a5-441a-809c-69ca10ec12fd","originalAuthorName":"陈登宇"},{"authorName":"朱锡锋","id":"2dd1165e-5458-47ae-a8ff-edaecd9690a5","originalAuthorName":"朱锡锋"}],"doi":"10.1016/S1872-2067(12)60634-2","fpage":"1674","id":"d6cf9afa-d3ab-4041-bbb3-efb62576e1ea","issue":"9","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"9a4423f8-4a1a-4005-9e7d-8fb6555e35cc","keyword":"稻壳","originalKeyword":"稻壳炭"},{"id":"b842e06c-c684-4f37-8b4f-c3b5589d8eca","keyword":"固体酸催化剂","originalKeyword":"固体酸催化剂"},{"id":"f0c344be-36e1-44b3-ae1d-a831b9239dd2","keyword":"生物柴油","originalKeyword":"生物柴油"},{"id":"88d9a716-7b31-4957-856b-9741e4f2dd69","keyword":"酯化","originalKeyword":"酯化"}],"language":"zh","publisherId":"cuihuaxb201309006","title":"稻壳固体酸催化剂的制备及其催化酯化反应性能","volume":"34","year":"2013"},{"abstractinfo":"以蔗糖为原料,浓硫酸为磺酸化试剂制备了碳磺酸化固体材料,考察了其催化对苯二酚烷基化和乙酸乙酯水解反应的性能.结果表明,该催化剂对这两个反应都具有较高的催化活性.在150℃反应4 h后,对苯二酚转化率和2-叔丁基对苯二酚收率分别达到了91%和60%,在60℃反应12 h,乙酸乙酯达到了平衡转化率94%,但催化剂稳定性较差,尤其在对苯二酚烷基化反应中失活严重,重复使用一次后,催化剂活性下降超过30%.详细考察了反应温度和溶剂对催化剂稳定性的影响,结果表明,该固体在低温的水相或非极性溶剂中较为稳定.通过酸碱滴定、红外光谱和紫外可见光谱等表征手段,对催化剂的失活原因进行了探讨,初步认定催化剂的失活是由于表面磺酸基团在反应过程中脱落所致.催化剂活性可以通过再磺酸化得到恢复.","authors":[{"authorName":"周丽娜","id":"658d8048-5e0b-472e-a176-3283e7341dfd","originalAuthorName":"周丽娜"},{"authorName":"刘可","id":"9091a5a6-ce73-47ef-9798-7e8fff79d66c","originalAuthorName":"刘可"},{"authorName":"华伟明","id":"1ed6787a-f0c9-4e40-ab95-06f97d67faef","originalAuthorName":"华伟明"},{"authorName":"乐英红","id":"a801967d-ae78-4253-a8cd-70a9b639984e","originalAuthorName":"乐英红"},{"authorName":"高滋","id":"a232db24-796a-4d3c-bf4a-a9370de1fab1","originalAuthorName":"高滋"}],"doi":"","fpage":"196","id":"42ca8b44-fb83-45ac-a4e5-98bb30008690","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"ddc363ae-350c-4b71-9d15-50827f820702","keyword":"碳固体","originalKeyword":"碳基固体酸"},{"id":"7b982be4-fc2a-4328-bd4a-c5a3caa72dc9","keyword":"磺酸化","originalKeyword":"磺酸化"},{"id":"8305ae6f-63d9-4a9d-a7ef-ec7fc96f2da7","keyword":"烷基化","originalKeyword":"烷基化"},{"id":"61524b1f-32ac-4d65-9bef-e3c06a603883","keyword":"水解","originalKeyword":"水解"},{"id":"ffbda37f-30ee-498c-b849-ee5b7d6ea1f9","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"80b837e4-f759-4e1e-bab7-ab9e1ad9a116","keyword":"再生","originalKeyword":"再生"}],"language":"zh","publisherId":"cuihuaxb200903005","title":"碳磺酸化固体材料的制备及其催化性能","volume":"30","year":"2009"},{"abstractinfo":"以煤焦油活性(TAC)和椰子壳活性(CAC)为原料,以聚乙烯醇缩丁醛(PVB)为粘接剂,以邻苯二甲酸二丁酯(DBP)为增塑剂,通过混合、成型、硬化及炭化处理,最终制得固体活性。详细地考查了工艺条件(如强度、收率、收缩率、比表面积等)的影响。研究结果表明:对于椰子壳活性来说,制备高强度(>5000kPa)的固体活性是困难的,其主要原因在于椰子壳活性比煤焦油活性含有更少的表面官能团(-COOH,-OH等),而这些官能团可能增强PVB在活性表面的粘接,并且参与粘接剂的氧化硬化,硬化的粘接剂在炭化过程中在活性颗粒间形成桥或者枝状结构而粘接这些颗粒。因此,为了制备高强度的固体活性,椰子壳活性的表面改性是必要的。","authors":[{"authorName":"乔文明","id":"de68efb4-25c6-4fe8-b6c1-007d2bd15296","originalAuthorName":"乔文明"},{"authorName":"光来要三","id":"565b88d5-5b02-470e-ad6d-07ef64bce15c","originalAuthorName":"光来要三"},{"authorName":"持田力","id":"27042730-afdd-461d-9c0c-cac2dae645ff","originalAuthorName":"持田力"},{"authorName":"堀雄一","id":"50137afc-fbc3-4ea5-80ec-4c69c4474056","originalAuthorName":"堀雄一"},{"authorName":"前田岳志","id":"0259e895-136a-4f29-8bf8-7625b8713f84","originalAuthorName":"前田岳志"}],"doi":"10.3969/j.issn.1007-8827.2001.02.001","fpage":"1","id":"5a9b56c6-5f97-4031-95fd-84c485eebb08","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"73228672-83b3-4891-b104-5d0cae80bcca","keyword":"活性","originalKeyword":"活性炭"},{"id":"6802b5db-4b9f-4770-9aa0-ec2568109f57","keyword":"热固化","originalKeyword":"热固化"},{"id":"e2a65875-1b60-4fbf-beca-3cb4d1a9c72b","keyword":"SEM","originalKeyword":"SEM"},{"id":"f0ed87b9-8c2e-4be9-ac49-ea9e0b8b3701","keyword":"表面官能团","originalKeyword":"表面官能团"}],"language":"zh","publisherId":"xxtcl200102001","title":"活性及工艺参数对所制固体活性性能的影响","volume":"16","year":"2001"},{"abstractinfo":"采用对甲苯磺酸和可溶性淀粉混合物部分炭化制备新型碳固体酸催化剂,研究了m(对甲苯磺酸):m(可溶性淀粉)、炭化温度和炭化时间对催化剂催化合成1,4-丁二醇双琥珀二异辛酯的影响,用SEM、XRD、红外光谱、元素分析等对催化剂进行了表征。结果表明,在m(对甲苯磺酸):m(可溶性淀粉)=1.0:2.0、炭化温度200℃、炭化时间8 h的条件下,得到碳固体的催化活性最高,在180℃下反应1.5 h可达到规定的酯化率,催化剂重复使用5次后,酯化率仍能达到93%以上,另外该催化剂具有良好的热稳定性。","authors":[{"authorName":"华平","id":"153e4a68-1c79-4aab-966f-b6e009c34f20","originalAuthorName":"华平"},{"authorName":"喻红梅","id":"4ddb946f-b26b-4afd-803f-33f3bb0699bc","originalAuthorName":"喻红梅"},{"authorName":"李建华","id":"f43b8f03-0dce-43f1-9f34-eb338c81009f","originalAuthorName":"李建华"},{"authorName":"方略韬","id":"038ddfe4-7759-4f2d-be74-451ea1e54493","originalAuthorName":"方略韬"},{"authorName":"戴宝江","id":"67fdced5-099d-4e30-9555-e1286df775ff","originalAuthorName":"戴宝江"},{"authorName":"张海滨","id":"8fe727c0-4ff0-478b-a6ad-84762cbe25f2","originalAuthorName":"张海滨"},{"authorName":"朱国华","id":"cbc02b38-a164-4c90-8159-e9264af182f2","originalAuthorName":"朱国华"}],"doi":"","fpage":"539","id":"2338f744-85c5-4eba-8636-863278b16e10","issue":"5","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"a75c5a60-fdfa-43ae-a381-482b83070035","keyword":"碳固体","originalKeyword":"碳基固体酸"},{"id":"84fb9cc8-e8c5-4af9-b80e-5a88772b0516","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"c098e4ab-9b4c-4046-8006-053f3a8bdcab","keyword":"1,4-丁二醇双琥珀二异辛酯","originalKeyword":"1,4-丁二醇双琥珀酸二异辛酯"},{"id":"ae46b8d4-4fd5-41c9-8a4d-08398384b657","keyword":"酯化","originalKeyword":"酯化"}],"language":"zh","publisherId":"xxtcl201605011","title":"碳固体在1,4-丁二醇双琥珀二异辛酯合成中的催化性能","volume":"31","year":"2016"},{"abstractinfo":"分别采用丝网印刷和浸渍法两种工艺制备了固体氧化物电解池(SOEC)铁锶镧(LSF)复合阳极, 通过XRD、TEM、SEM等手段对LSF粉体和复合材料的相结构和微观结构进行了分析, 利用电位扫描以及电化学阻抗谱(EIS)比较了这些复合阳极在SOEC工作温度800?C时的电化学性能. 结果表明, 采用共沉淀?共沸蒸馏(CP-AD)合成的LSF20(La0.8Sr0.2FeO3-δ)粉体粒径约为20~30 nm, 其都分布在氧化锆(YSZ)陶瓷骨架上; 800℃时, 浸渍法工艺制备的LSF20-YSZ复合阳极在0.1V极化过电位下的极化电流值为0.38~0.49A/cm2, 约为丝网印刷工艺制备的电化学性能的2~2.5倍.","authors":[{"authorName":"王娟娟","id":"3513a426-b3a0-448e-a9cb-4795e295d10f","originalAuthorName":"王娟娟"},{"authorName":"张勇","id":"6e6c7081-1e52-458e-8a0b-d2fa82d240eb","originalAuthorName":"张勇"},{"authorName":"孔江榕","id":"41aee148-6d14-4930-b7cd-9c4d6c708a8c","originalAuthorName":"孔江榕"},{"authorName":"邓长生","id":"f61350be-00f6-4bb0-b879-ed251506d6ea","originalAuthorName":"邓长生"},{"authorName":"徐景明","id":"4f3937e3-73be-4c60-aaa4-c5b0e1b8c538","originalAuthorName":"徐景明"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.00979","fpage":"979","id":"5f09c46e-56fd-487c-9aea-8fc93ef5aa32","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5f4a525e-fb3d-47b9-b00f-7b0857702658","keyword":"复合阳极","originalKeyword":"复合阳极"},{"id":"7f27554c-440d-42b1-a0b4-350999995218","keyword":" process","originalKeyword":" process"},{"id":"0ea22c9a-570c-4e1b-a2fd-6507d125265c","keyword":" electrochemical performance","originalKeyword":" electrochemical performance"}],"language":"zh","publisherId":"1000-324X_2010_9_5","title":"固体氧化物电解池铁锶镧复合阳极的制备及性能研究","volume":"25","year":"2010"},{"abstractinfo":"分别采用丝网印刷和浸渍法两种工艺制备了固体氧化物电解池(SOEC)铁锶镧(LSF)复合阳极,通过XRD、TEM、SEM等手段对LSF粉体和复合材料的相结构和微观结构进行了分析,利用电位扫描以及电化学阻抗谱(EIS)比较了这些复合阳极在SOEC工作温度800℃时的电化学性能.结果表明,采用共沉淀-共沸燕馏(CP-AD)合成的LSF20(La0.8Sr0.2FeO3-δ)粉体粒径约为20~30nm,其都分布在氧化锆(YSZ)陶瓷骨架上;800℃时,浸渍法工艺制备的LSF20-YSZ复合阳极在0.1V极化过电位下的极化电流值为0.38~0.49A/cm2,约为丝网印刷工艺制备的电化学性能的2~2.5倍.","authors":[{"authorName":"王娟娟","id":"76123c85-169e-42f4-9525-62f8815df7d7","originalAuthorName":"王娟娟"},{"authorName":"张勇","id":"ac374486-0ca5-42ef-a26e-644f9ba071c6","originalAuthorName":"张勇"},{"authorName":"孔江榕","id":"7358a33d-27db-40c1-9529-6e25bfe4a044","originalAuthorName":"孔江榕"},{"authorName":"邓长生","id":"fb2519a2-e077-471d-9944-13d26b47988d","originalAuthorName":"邓长生"},{"authorName":"徐景明","id":"931876ea-3dbc-4daa-95de-baf2ebae7ceb","originalAuthorName":"徐景明"}],"doi":"10.3724/SP.J.1077.2010.00979","fpage":"979","id":"322716c3-c905-4854-b179-190d36375c0e","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9d3d6d16-d8c5-4973-8cf5-b29c1c771e6c","keyword":"复合阳极","originalKeyword":"复合阳极"},{"id":"083287cb-f142-4f14-8a98-df5b7f32044d","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"f88db65f-89d2-4a2b-b815-92cae3b0cf95","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"wjclxb201009016","title":"固体氧化物电解池铁锶镧复合阳极的制备及性能研究","volume":"25","year":"2010"},{"abstractinfo":"本文综述了国内外学者采用湿化学法制备锶镁掺杂的镓固体电解质(LSGM)的研究现状.阐述了每种制备方法的制备过程和主要特点,并同传统固相反应法进行了比较.最后对LSGM材料进一步研究的方向进行了展望.","authors":[{"authorName":"石敏","id":"11749f47-84e4-49c8-ab48-fb68d82453db","originalAuthorName":"石敏"},{"authorName":"陈绵松","id":"a1ced28b-33fd-4402-99d5-53e6f254566c","originalAuthorName":"陈绵松"},{"authorName":"房虹姣","id":"122d9857-af91-48d2-b0c2-5170b5caeb19","originalAuthorName":"房虹姣"},{"authorName":"许育东","id":"177d7569-424a-4d7e-84c8-73392bb40401","originalAuthorName":"许育东"},{"authorName":"于涛","id":"8ee262df-6d1b-4066-b649-55046cbe41c8","originalAuthorName":"于涛"},{"authorName":"于桂洋","id":"21a057ba-e2a1-4372-b800-defd1305556b","originalAuthorName":"于桂洋"},{"authorName":"伍光","id":"f4f6b86d-ddff-4afd-9441-e39ecda8e8d2","originalAuthorName":"伍光"}],"doi":"","fpage":"72","id":"57a4ae4e-14b5-4b9e-be2b-386591893dd2","issue":"1","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"6d7c4018-f9c7-4792-90e1-a59f9d2b69a4","keyword":"湿化学法","originalKeyword":"湿化学法"},{"id":"24c5d37d-0851-4ac9-b491-04658b6e6b51","keyword":"锶镁掺杂的镓镧","originalKeyword":"锶镁掺杂的镓酸镧"},{"id":"bec11cc3-d0cc-49b4-982c-71f2651e3fa3","keyword":"杂相","originalKeyword":"杂相"},{"id":"fee6aa07-0bd3-442b-8fc8-9540f5a99d75","keyword":"离子电导率","originalKeyword":"离子电导率"}],"language":"zh","publisherId":"jsgncl201001017","title":"湿化学法制备锶镁掺杂镓固体电解质材料的研究进展","volume":"17","year":"2010"},{"abstractinfo":"固体是一种主要由酸式盐组成的干燥粉末,用于金属表面电镀前的浸蚀与活化.给出了3种固体的配方:(1)硫酸氢钠90%(质量分数,下同),氟化钠10%;(2)硫酸氢钠70%,氟化氢钾15%,草酸15%,表面活性剂少量;(3)硫酸氢钠250kg,氟化钠24 kg,BX渗透剂0.2 kg,氯化钠25.8 kg.介绍了固体在活化、阴极电解清洗及酸洗中应用的工艺条件.","authors":[{"authorName":"王宗雄","id":"b1223f7c-90b7-431d-91be-3908c66af43d","originalAuthorName":"王宗雄"}],"doi":"","fpage":"20","id":"c2ff6d8f-9d5c-4f1d-882f-91d75e349326","issue":"11","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"1d3c615d-5596-4368-aadd-6cc995bacebe","keyword":"酸式盐","originalKeyword":"酸式盐"},{"id":"f033e0e3-8ea9-4eac-b2c9-dd393bfb808c","keyword":"金属","originalKeyword":"金属"},{"id":"8fbb5c96-5496-44c2-86d8-29a2b3791563","keyword":"活化","originalKeyword":"活化"},{"id":"fd1d88bf-3e59-4ddb-9077-0f0afb1407d3","keyword":"电解清洗","originalKeyword":"电解清洗"},{"id":"f0e0671b-7a8e-459e-b849-007ba0262b6c","keyword":"酸洗","originalKeyword":"酸洗"}],"language":"zh","publisherId":"ddyts201211005","title":"固体的使用方法","volume":"31","year":"2012"}],"totalpage":3537,"totalrecord":35362}