{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"系统研究了用于生产N80级热轧非调质无缝油井管的钢种33Mn2V在不同加热温度和不同保温时间下的奥氏体晶粒长大规律。结果表明,该钢在1100和1200℃保温时,奥氏体晶粒等温长大规律较好地服从抛物线型经验表达式,等温长大指数n 均相当接近1/2。若等温时间为10min,利用ASTM 晶粒度级别等于5.00 的临界判据定义的该钢实用奥氏体晶粒粗化温度位于1250℃左右;在900---1250℃温度范围内, 该钢种奥氏体平均晶粒尺寸与加热温度的定量关系近似服从Arrhenius关系: 表明该钢在高温加热时具有较好的抗晶粒粗化能力,此结论对于将该钢种实际应用于N80级的热轧非调质无缝油井管工业生产具有重要参考价值.","authors":[{"authorName":"钟云龙","id":"0843f984-d2bc-4c48-b894-01bed0d5209a","originalAuthorName":"钟云龙"},{"authorName":"刘国权","id":"a46ac3c4-ecec-44d7-8040-56f0d15872f5","originalAuthorName":"刘国权"},{"authorName":"刘胜新","id":"df7dd7ee-fc9a-496c-8a3f-765d4dd2e9e2","originalAuthorName":"刘胜新"}],"categoryName":"|","doi":"","fpage":"699","id":"dc1fc88d-b8da-4bb2-80c3-6a075c7d2cde","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"cd77855d-26d5-410a-aed6-f5e432ee177d","keyword":"中碳微合金化钢","originalKeyword":"中碳微合金化钢"},{"id":"a6d36314-3915-4f5b-a221-6774463afd77","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_7_11","title":"新型油井管钢33Mn2v的奥氏体晶粒长大规律","volume":"39","year":"2003"},{"abstractinfo":"系统研究了用于生产N80级热轧非调质无缝油井管的钢种33Mn2V在不同加热温度和不同保温时间下的奥氏体晶粒长大规律.结果表明,该钢在1100和1200℃保温时,奥氏体晶粒等温长大规律较好地服从抛物线型经验表达式,等温长大指数n均相当接近1/2.若等温时间为10min,利用ASTM晶粒度级别等于5.00的临界判据定义的该钢实用奥氏体晶粒粗化温度位于1250℃左右;在900—1250℃温度范围内,该钢种奥氏体平均晶粒尺寸(D)与加热温度(T)的定量关系近似服从Arrhenius关系:D=1.12×10~4exp(-8.31×10~3/T).表明该钢在高温加热时具有较好的抗晶粒粗化能力,此结论对于将该钢种实际应用于N80级的热轧非调质无缝油井管工业化生产具有重要参考价值.","authors":[{"authorName":"钟云龙","id":"8d87d324-832c-470a-b584-9c3cdac86770","originalAuthorName":"钟云龙"},{"authorName":"刘国权","id":"4cf919b0-0e20-4f4a-ab9f-3a43cd558bf0","originalAuthorName":"刘国权"},{"authorName":"刘胜新","id":"bfb2cd2f-33d0-4b66-ad28-59eb52424cdc","originalAuthorName":"刘胜新"},{"authorName":"刘长胜","id":"5a1a22c4-25af-4e23-ba2c-c589d2b4e84f","originalAuthorName":"刘长胜"},{"authorName":"李光","id":"00adb102-0724-4b79-a3c2-5301e58ef200","originalAuthorName":"李光"},{"authorName":"何岳","id":"20d5ec25-641c-422c-99b6-17b31ef750b7","originalAuthorName":"何岳"},{"authorName":"钱红宝","id":"d8a21d62-a2c2-4421-b93d-07cecab34f02","originalAuthorName":"钱红宝"},{"authorName":"李洪德","id":"f4dd6199-454d-4ba3-be1f-ba302fa0b21e","originalAuthorName":"李洪德"},{"authorName":"江玉祥","id":"cc80bab5-633c-4669-b397-251faa31be20","originalAuthorName":"江玉祥"}],"doi":"10.3321/j.issn:0412-1961.2003.07.005","fpage":"699","id":"f84e8e86-c364-42f0-8c6d-45405a29490c","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"fad03491-c86a-4b72-a8c2-34ab7e6f4748","keyword":"中碳微合金化钢","originalKeyword":"中碳微合金化钢"},{"id":"c6407d16-2bfb-4bd0-9d32-3fae9bc9bf0d","keyword":"无缝油井管","originalKeyword":"无缝油井管"},{"id":"cd03c033-84f5-4122-be25-9c8d70cf75af","keyword":"奥氏体晶粒长大","originalKeyword":"奥氏体晶粒长大"}],"language":"zh","publisherId":"jsxb200307005","title":"新型油井管钢33Mn2V的奥氏体晶粒长大规律","volume":"39","year":"2003"},{"abstractinfo":"借助Gleeble1500热模拟试验机测试了含Nb和含Nb、Ti两种中碳微合金化钢的高温力学行为,分析了析出物、相变、动态再结晶对微合金化钢高温延塑性的影响.结果表明:试验钢种无第Ⅱ脆性区出现;含Nb钢第Ⅲ脆性区的温度范围为950~700℃,含Nb、Ti钢第Ⅲ脆性区的温度范围为900~725℃;微合金化元素Ti的加入可以细化奥氏体晶粒使含Nb微合金化钢高温塑性槽变窄、变浅;析出物沿晶界多而细小的析出和γ→α相变是第Ⅲ脆性区微合金化钢高温延塑性变差的主要原因.实际生产中通过优化二冷区水量,采用弱冷,可以有效降低微合金化钢表面微裂纹的发生率.","authors":[{"authorName":"龚雅林","id":"7d446fdf-3cf3-4a3b-a333-a0ca125e6510","originalAuthorName":"龚雅林"},{"authorName":"张炯明","id":"9ea2126e-2645-417d-aa54-e95fc4c2bf7e","originalAuthorName":"张炯明"},{"authorName":"甄新刚","id":"bee1fcaa-353e-438a-8fa7-44fa9429de77","originalAuthorName":"甄新刚"},{"authorName":"陈少东","id":"34169b66-d136-41a7-bc25-ac9fddc98eb3","originalAuthorName":"陈少东"},{"authorName":"姚永宽","id":"298d5bc5-c43d-48c7-b26a-e2fab01f49e3","originalAuthorName":"姚永宽"},{"authorName":"王道远","id":"5ed21941-cc57-4dbf-ab88-bc62f198f3bb","originalAuthorName":"王道远"}],"doi":"","fpage":"67","id":"81c4ae51-4e2c-4457-9ced-9d55ee074087","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2330590e-9b48-4e6f-89d5-85fcc1d1f1b5","keyword":"微合金化钢","originalKeyword":"微合金化钢"},{"id":"bd1098f0-4688-44ef-a5d4-7e02f8598a86","keyword":"连铸","originalKeyword":"连铸"},{"id":"2e60cb4b-0ae1-4858-b7cb-e9cf42cd0ffc","keyword":"高温延塑性","originalKeyword":"高温延塑性"},{"id":"8102b7eb-39b4-491d-b4b1-9a7613aba6d5","keyword":"表面微裂纹","originalKeyword":"表面微裂纹"}],"language":"zh","publisherId":"gt201006015","title":"中碳微合金化钢高温延塑性的研究","volume":"45","year":"2010"},{"abstractinfo":"借助gleeble1500热模拟试验机测试了含Nb和含Nb、Ti两种典型中碳微合金化钢的高温力学行为,分析了析出物、相变、冷却速率、动态再结晶对微合金化钢高温延塑性的影响。结果表明:实验钢种无第Ⅱ脆性区出现;含Nb钢第Ⅲ脆性区的温度范围约为950~700℃,含Nb、Ti钢第Ⅲ脆性区的温度范围约为900℃~725℃;析出物沿晶界多而细小的析出和γ→α相变是第Ⅲ脆性区微合金化钢高温延塑性变差的主要原因。实际生产中通过优化二冷区水量,采用弱冷,可以有效降低微合金化钢表面微裂纹的发生率。","authors":[{"authorName":"龚雅林","id":"d2f52922-0b7a-4606-86bd-ce9d0daae749","originalAuthorName":"龚雅林"}],"categoryName":"|","doi":"","fpage":"67","id":"8429451b-1043-4f13-81c1-4d981f087d4c","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ebbcd381-1e56-44e8-9736-b06f20a37041","keyword":"微合金化钢;连铸;高温延塑性;表面微裂纹","originalKeyword":"微合金化钢;连铸;高温延塑性;表面微裂纹"}],"language":"zh","publisherId":"0449-749X_2010_6_8","title":"中碳微合金化钢高温延塑性的研究","volume":"45","year":"2010"},{"abstractinfo":"利用Formastor-Digital膨胀仪测定了Nb-V复合微合金化中碳非调质钢的连续冷却转变曲线(CCT曲线),并测定了不同冷速下实验钢硬度的变化.分析了不同Nb、V含量对中碳非调质钢连续冷却转变的影响.结果表明,随着Nb、V含量的增加,相变点温度随之降低,并使得转变过程中珠光体、贝氏体转变区域变宽,组织中相应的体积分数增加.冷速在0.08~1℃/s时,组织主要为铁素体和珠光体;当冷速大于2.5℃/s时,开始发乍贝氏体转变,随着冷速的进一步增加,贝氏体含量越来越多,并在5℃/s时出现马氏体组织.Nb-V复合微合金化实验钢受冷速的影响较大,随冷速的增大实验钢的显微硬度也随之提高.冷速分别在1O℃/s和30℃/s时,硬度突然增大.","authors":[{"authorName":"程慧静","id":"af474e59-71ea-45cf-b620-f5bd94eccd16","originalAuthorName":"程慧静"},{"authorName":"王福明","id":"8725f7e8-242b-464b-a3d4-69f652cb981a","originalAuthorName":"王福明"},{"authorName":"潘钊彬","id":"1167ba95-a34b-4fb3-a485-e83a55feae7c","originalAuthorName":"潘钊彬"},{"authorName":"李长荣","id":"6e8572eb-d8b6-478b-b784-ed2eb7444135","originalAuthorName":"李长荣"},{"authorName":"徐国庆","id":"ac77fcc3-dbde-43a8-8415-ace1b3a84665","originalAuthorName":"徐国庆"}],"doi":"","fpage":"44","id":"c3191243-f3db-4cc5-9ad5-09e26ef4c6f8","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"003a8b47-cacc-4a84-aa76-7f395740ba0b","keyword":"Nh-v复合微合金化","originalKeyword":"Nh-v复合微合金化"},{"id":"d4b53f2b-40cc-4857-8442-a642c9bac378","keyword":"非调质钢","originalKeyword":"非调质钢"},{"id":"ad6583a2-249f-4285-9a9e-889bdf55e71f","keyword":"连续冷却转变(CCT)曲线","originalKeyword":"连续冷却转变(CCT)曲线"}],"language":"zh","publisherId":"jsrclxb200905011","title":"Nb-V复合微合金化中碳非调质钢的连续冷却转变","volume":"30","year":"2009"},{"abstractinfo":"采用金相、透射电镜(SEM)、能谱仪(EDX)等分析手段研究了TMCP工艺生产的微合金化高强钢Q690钢的组织、第二相析出物,并在此基础上分析了其强化机理.发现钢板表面组织主要为板条贝氏体、少量粒状贝氏体以及针状铁素体,心部组织主要由粒状贝氏体和多边形铁素体构成;第二相析出物主要是铌钛的碳氮化物,尺寸在20 nm左右,弥散分布在基体上,多呈方形或类方形;硼主要以酸溶硼的形式存在,明显提高了钢的淬透性.Q690钢的强化机制主要是贝氏体相变强化、细晶强化和第二相析出强化,而这都与钢中微合金化元素的作用有关.","authors":[{"authorName":"李秉军","id":"d1bd8657-762f-4e7e-863a-1b89d489400d","originalAuthorName":"李秉军"},{"authorName":"李晶","id":"99140b1b-4edf-43f1-bb38-421ea20f0b4c","originalAuthorName":"李晶"},{"authorName":"刘伟健","id":"3676ad16-1f12-4282-bb45-e41f378af594","originalAuthorName":"刘伟健"},{"authorName":"张逖","id":"5de2dffe-0042-42eb-98cf-c5415df1aa9e","originalAuthorName":"张逖"}],"doi":"10.7513/j.issn.1004-7638.2013.03.016","fpage":"77","id":"19ffe3fc-095f-4701-a09b-b53352628234","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"d60a090d-234b-4949-954c-43b87959f930","keyword":"低碳贝氏体钢","originalKeyword":"低碳贝氏体钢"},{"id":"7480e5d1-7cdf-419d-9459-2ba975747f1d","keyword":"TMCP工艺","originalKeyword":"TMCP工艺"},{"id":"343ddc18-6575-4c91-8a6f-06cf7b61d795","keyword":"微合金元素","originalKeyword":"微合金元素"},{"id":"c6d23f0d-4eab-45de-93d9-f44522de5465","keyword":"析出相","originalKeyword":"析出相"},{"id":"33c23e48-a203-4791-aed2-203dc122f607","keyword":"强化机理","originalKeyword":"强化机理"}],"language":"zh","publisherId":"gtft201303016","title":"TMCP生产低碳贝氏体钢中微合金化元素的作用机理研究","volume":"34","year":"2013"},{"abstractinfo":"利用真空感应炉冶炼氮-钒微合金化的低碳耐候钢,结合金相显微镜和透射电镜分析了耐候钢的显微组织,并通过拉伸、冲击试验和断口分析表征了实验钢的强韧性.力学试验结果表明,氮-钒微合金化耐候钢具有良好的塑性和强韧性组合.金相组织分析表明,加氮加钒耐候钢中主要组织为等轴铁素体和少量离异型珠光体(体积分数5%),体积分数约30%的铁素体晶粒中有类似粒状贝氏体组织生成;弥散析出的VN质点细化了铁素体晶粒,铁素体平均晶粒尺寸为7.8 μm.","authors":[{"authorName":"王博","id":"e20ddf03-67ba-4801-9cba-116b8792e590","originalAuthorName":"王博"},{"authorName":"王德永","id":"7b43963f-58f2-4663-9974-7e7774dd276d","originalAuthorName":"王德永"},{"authorName":"刘承军","id":"494d710c-4193-497a-9ed7-0301a9804f77","originalAuthorName":"刘承军"},{"authorName":"姜茂发","id":"1adc2ba4-000e-4bef-8c00-f5cf26482f4c","originalAuthorName":"姜茂发"}],"doi":"10.3969/j.issn.1004-7638.2007.04.003","fpage":"12","id":"923659b9-9cc8-4f67-866a-51d64d155c37","issue":"4","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"daf62327-da50-45e7-b45b-f086fada069b","keyword":"耐候钢","originalKeyword":"耐候钢"},{"id":"109f1bca-dea4-4e84-93e5-0fea2c711120","keyword":"氮-钒微合金化","originalKeyword":"氮-钒微合金化"},{"id":"a18b4291-65a0-4625-9468-c98d3f8f7028","keyword":"等轴铁素体","originalKeyword":"等轴铁素体"},{"id":"d014e7dc-954f-44e8-a2af-d338c4d262e8","keyword":"细晶强化","originalKeyword":"细晶强化"},{"id":"df428e4b-9fcd-434f-a043-a6bafc731182","keyword":"析出强化","originalKeyword":"析出强化"}],"language":"zh","publisherId":"gtft200704003","title":"氮-钒微合金化对低碳耐候钢强韧性的影响","volume":"28","year":"2007"},{"abstractinfo":"采用热膨胀法测定6种不同成分低碳贝氏体钢的连续冷却转变(CCT)曲线。CCT曲线表明,加入微量硼能使含钒低碳贝氏体钢在大于03℃/s的冷速下获得贝氏体组织,而V-N微合金化的低碳贝氏体获得全贝氏体的临界冷速要高于V-B钢,且贝氏体转变的开始温度也要较V-B钢高20℃左右。在含钒、氮低碳贝氏体钢中加入钼、铬将会促进钢的贝氏体相变,但钼的作用要优于铬;钼、铬的加入可使含钒、氮低碳贝氏体钢的贝氏体转变温度降低至少30℃,且贝氏体组织得到了细化,钢的维氏硬度也提高了HV10~30。","authors":[{"authorName":"高飞","id":"63644655-64da-445e-ac6e-81108659c7a1","originalAuthorName":"高飞"},{"authorName":",钱天才,王瑞珍","id":"68f3591d-c961-4219-a754-6887e2bec58d","originalAuthorName":",钱天才,王瑞珍"}],"categoryName":"|","doi":"","fpage":"40","id":"15876f18-fc54-419c-b2d1-6b0ad2eaad0b","issue":"12","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"617a063c-7fc5-408e-9084-888620adc8be","keyword":"CCT曲线 ","originalKeyword":"CCT曲线 "},{"id":"20e18b59-5019-47b9-81aa-a9c5c203541a","keyword":" low carbon bainitic steel ","originalKeyword":" low carbon bainitic steel "},{"id":"2a78bda7-2b14-41c1-b2b1-a5690f20b23c","keyword":" vanadium ","originalKeyword":" vanadium "},{"id":"b0c15881-cae7-4119-89ab-61077ec3c439","keyword":" V-N Microalloying","originalKeyword":" V-N Microalloying"}],"language":"zh","publisherId":"1001-0963_2011_12_1","title":"钒微合金化低碳贝氏体钢的连续冷却相变特性","volume":"23","year":"2011"},{"abstractinfo":"采用热膨胀法测定6种不同成分低碳贝氏体钢的连续冷却转变(CCT)曲线。CCT曲线表明,加入微量硼能使含钒低碳贝氏体钢在大于0.3℃/s的冷速下获得贝氏体组织,而V-N微合金化的低碳贝氏体获得全贝氏体的临界冷速要高于V-B钢,且贝氏体转变的开始温度也要较V-B钢高20℃左右。在含钒、氮低碳贝氏体钢中加入钼、铬将会促进钢的贝氏体相变,但钼的作用要优于铬;钼、铬的加入可使含钒、氮低碳贝氏体钢的贝氏体转变温度降低至少30℃,且贝氏体组织得到了细化,钢的维氏硬度也提高了HV 10~30。","authors":[{"authorName":"高飞","id":"9847570e-8a7f-4994-bc50-a3c5de1ab632","originalAuthorName":"高飞"},{"authorName":"钱天才","id":"cfc2de90-e4f7-4332-aa1c-ba7c918db354","originalAuthorName":"钱天才"},{"authorName":"王瑞珍","id":"d2502692-13df-463d-a2e8-a67dd64c0fca","originalAuthorName":"王瑞珍"}],"doi":"","fpage":"40","id":"355d17c2-b2cd-4ea5-a5ce-5053727c4741","issue":"12","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"37c21b3c-edd5-49ac-9646-4eae3455663a","keyword":"CCT曲线","originalKeyword":"CCT曲线"},{"id":"27f37509-8d88-44b6-b6b0-3ae8825f9491","keyword":"低碳贝氏体钢","originalKeyword":"低碳贝氏体钢"},{"id":"24f03237-5401-4ea1-b873-02f05e0a1acf","keyword":"钒","originalKeyword":"钒"},{"id":"ac031a11-d5f8-4244-82ae-2ba461e2676c","keyword":"V-N微合金化","originalKeyword":"V-N微合金化"}],"language":"zh","publisherId":"gtyjxb201112010","title":"钒微合金化低碳贝氏体钢的连续冷却相变特性","volume":"23","year":"2011"},{"abstractinfo":"综述了低碳及超低碳微合金钢显微组织研究的现状,介绍了奥氏体连续冷却转变时形成的各种铁素体的术语,讨论了多边及准多边铁素体、针状铁素体及晶内成核针状铁素体、粒状贝氏体铁素体等的形成机理和组织形貌.另外,还指出了文献中使用\"针状铁素体\"术语的一些混淆及不同理解,提出了在工程上分析复杂管线钢组织时,可将多种形态铁素体简化为铁素体及贝氏体两类.对当前西气东输管线工程中材料显微组织的判断可提供参考.","authors":[{"authorName":"冯耀荣","id":"155e02a2-bd37-41fb-b003-6d3576a23b34","originalAuthorName":"冯耀荣"},{"authorName":"柴惠芬","id":"567d234a-1a63-4e4d-bbf5-2c49017b05ab","originalAuthorName":"柴惠芬"},{"authorName":"郭生武","id":"bb33a321-a9c7-4261-a9ce-258242ca0bfc","originalAuthorName":"郭生武"},{"authorName":"霍春勇","id":"23a61116-bdee-47de-8dab-6341f7bbff3c","originalAuthorName":"霍春勇"},{"authorName":"刘迎来","id":"3fb8123f-dca5-4e73-9cc2-8f0f34cb8a18","originalAuthorName":"刘迎来"},{"authorName":"李鹤林","id":"8014edcd-1318-47a1-99be-bd19ec5305d9","originalAuthorName":"李鹤林"},{"authorName":"金志浩","id":"7272ec55-18b8-46b9-87bd-ff8b6b0b8d20","originalAuthorName":"金志浩"}],"doi":"","fpage":"9","id":"1eb71d51-dac1-47fe-ad8f-9489eb1e15c7","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f9323721-aa25-4da6-ac02-ca6304a9ffc3","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"d3587753-ac65-48d9-9419-3679816ccbc5","keyword":"显徽组织","originalKeyword":"显徽组织"},{"id":"ee40f98a-e891-4580-8088-288be9ce5dfd","keyword":"针状铁素体","originalKeyword":"针状铁素体"}],"language":"zh","publisherId":"cldb200206003","title":"低碳超低碳微合金化管线钢显微组织的研究进展","volume":"16","year":"2002"}],"totalpage":13882,"totalrecord":138815}