{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"高超音速导弹用天线罩材料须同时具有力学、介电、耐烧蚀及抗冲击等综合性能.本文简述了天线罩材料的发展历程,着重综述了连续纤维增强陶瓷基透波复合材料的研究现状,分析了高超音速导弹天线罩材料的关键技术,包括材料体系和制备工艺选择、材料加工技术,指出了高超音速导弹天线罩材料的发展方向.","authors":[{"authorName":"姜勇刚","id":"1b4c020c-4462-4fd5-a353-060e75013672","originalAuthorName":"姜勇刚"},{"authorName":"张长瑞","id":"3568c5f8-9146-4b76-80a9-dd9262552e8a","originalAuthorName":"张长瑞"},{"authorName":"曹峰","id":"9c24355b-b1be-4c96-9c75-4fdb06246d4c","originalAuthorName":"曹峰"},{"authorName":"王思青","id":"3ddafa0c-6dad-4ea9-bafa-44bde71147d7","originalAuthorName":"王思青"},{"authorName":"曹英斌","id":"d005fbbe-5301-4f9c-b860-9f8bd797b1cd","originalAuthorName":"曹英斌"}],"doi":"10.3969/j.issn.1001-1625.2007.03.018","fpage":"500","id":"b3b6aa2c-531f-4990-96e7-341afbaac33f","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c631f613-2f43-4ba3-b2be-59d7c984cd09","keyword":"高超音速导弹","originalKeyword":"高超音速导弹"},{"id":"28da33a7-1a25-48f5-91ec-ff99d227c131","keyword":"天线罩","originalKeyword":"天线罩"},{"id":"66c7591e-30a6-40b0-b992-2d5fb317008a","keyword":"透波材料","originalKeyword":"透波材料"}],"language":"zh","publisherId":"gsytb200703018","title":"高超音速导弹天线罩透波材料研究进展","volume":"26","year":"2007"},{"abstractinfo":"综述了超音速火焰喷涂技术的发展历史和基本工作原理.介绍了粉末粒度、喷涂距离等喷涂材料参数及工艺参数对涂层组织和性能的影响.分析评述了超音速火焰喷涂工艺在喷涂材料选择、经济适用性等方面的优缺点.随着经济发展及超音速火焰喷涂技术自身的革新,该技术必将应用于越来越多的领域.","authors":[{"authorName":"路阳","id":"7522b70c-f12b-439f-b230-4050fc460487","originalAuthorName":"路阳"},{"authorName":"丁明辉","id":"94513711-88b1-4a3b-9592-6afe96c9698c","originalAuthorName":"丁明辉"},{"authorName":"王智平","id":"fc6d9356-e9c6-47d7-a277-7cfe5e502997","originalAuthorName":"王智平"},{"authorName":"王玉波","id":"a14f61bb-ac1e-4514-9138-64442bad1dc7","originalAuthorName":"王玉波"},{"authorName":"杨效田","id":"2580976d-982e-440e-8901-aa32e6ac4f5e","originalAuthorName":"杨效田"},{"authorName":"周晶晶","id":"71bde8d7-b7b2-44e9-b7a1-ec1bd3983879","originalAuthorName":"周晶晶"}],"doi":"","fpage":"127","id":"3f1a7a96-64fe-45a9-9333-c33d22795a84","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"69ba1b60-ee41-4dda-878e-6ad4d1c14ece","keyword":"超音速火焰喷涂","originalKeyword":"超音速火焰喷涂"},{"id":"753891c2-5269-4b72-a24b-b7028f006e23","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"176d7b23-c243-4a7a-822a-4dc5e7786741","keyword":"涂层","originalKeyword":"涂层"}],"language":"zh","publisherId":"cldb201119027","title":"超音速火焰喷涂研究与应用","volume":"25","year":"2011"},{"abstractinfo":"为进一步提高超音速火焰喷涂NiCr-Cr3C2涂层的性能,采用超音速火焰喷涂技术在AISI1045钢基体上制备NiCr-Cr3C2涂层.采用扫描电镜、X射线衍射仪分析了涂层的形貌、相结构及化学成分;测试了涂层的显微硬度、弹性模量、结合强度等;采用摩擦磨损试验探究了涂层的摩擦学性能,得出了摩擦系数随时间的变化曲线及涂层的摩擦磨损机理.结果表明:超音速火焰喷涂NiCr-Cr3C2涂层晶体结构复杂,含有单晶、纳米晶,还含有少量非晶相,且涂层结构致密,孔隙率低,显微硬度为916 HV3N,弹性模量为248.671 GPa,结合强度为63 MPa;在不同载荷条件下,涂层的摩擦系数随时间变化趋势大致相同,且载荷越大,摩擦系数越低,磨损体积越大;载荷为20 N时,涂层磨损机制表现为黏着磨损,载荷增大到60 N时,涂层磨损机制过渡到磨粒磨损.","authors":[{"authorName":"陈淼","id":"d7623d8f-7575-4e89-9054-4f5070ffc670","originalAuthorName":"陈淼"}],"doi":"","fpage":"23","id":"fc0146e8-1694-4570-bfef-1af60cfcf980","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"a75163b4-a3fd-4c1f-9b24-eb90494f9fd2","keyword":"超音速火焰喷涂","originalKeyword":"超音速火焰喷涂"},{"id":"f2bbdd82-99ee-44a9-88cd-075a5d319ed5","keyword":"NiCr-Cr3C2涂层","originalKeyword":"NiCr-Cr3C2涂层"},{"id":"50bf3639-d07d-41a2-8713-20e1800618ff","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"d72a93ac-853d-4368-9da7-213f5229f2b1","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"},{"id":"f9e2cc58-5787-4e53-a2c0-8cb565a9addc","keyword":"AISI1045钢","originalKeyword":"AISI1045钢"}],"language":"zh","publisherId":"clbh201609007","title":"超音速火焰喷涂NiCr-Cr3C2涂层的组织结构与摩擦学性能","volume":"49","year":"2016"},{"abstractinfo":"介绍了一种新型的超音速火焰喷涂技术--活性燃烧高速燃气喷涂(AC-HVAF),该工艺的喷涂过程对喷涂材料的氧化及热退化影响非常小,可以制备出极低氧化物含量和极高致密度的涂层,该涂层具有优越的耐磨损和耐腐蚀能力,同时其喷涂速度和沉积效率均优于传统超音速火焰喷涂(HVOF).","authors":[{"authorName":"樊自拴","id":"9b12a8c9-6f6c-43de-96f8-ca4f0699d5ec","originalAuthorName":"樊自拴"},{"authorName":"孙冬柏","id":"45909eed-4e8f-44ae-8ab4-4f4413fcccba","originalAuthorName":"孙冬柏"},{"authorName":"俞宏英","id":"41f99077-94e2-4948-8388-c44b5a5bc3b7","originalAuthorName":"俞宏英"},{"authorName":"李辉勤","id":"0e70c748-cdb6-40ce-ae15-e067980d0b4a","originalAuthorName":"李辉勤"},{"authorName":"孟惠民","id":"a2049620-8bfb-419d-8dec-5ba63d089c91","originalAuthorName":"孟惠民"},{"authorName":"张济山","id":"7951d023-9f4c-4489-bfec-581f6c3a4a69","originalAuthorName":"张济山"},{"authorName":"乔力杰","id":"6df49301-7fd9-4a06-8d2f-51dd6cb93e77","originalAuthorName":"乔力杰"}],"doi":"10.3969/j.issn.1001-1560.2004.09.014","fpage":"33","id":"10592932-0ce4-469b-8287-b2a235596cee","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"9309b052-bec1-4413-b3de-c9e65c0513c0","keyword":"超音速火焰喷涂","originalKeyword":"超音速火焰喷涂"},{"id":"8250b14e-dd6f-4dad-85a1-8c0c46d5a437","keyword":"涂层","originalKeyword":"涂层"},{"id":"64a5ce0c-c8e1-42cf-b584-206cecd08e08","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"clbh200409014","title":"超音速火焰喷涂技术研究进展","volume":"37","year":"2004"},{"abstractinfo":"在多功能超音速火焰喷涂的基础上,通过液料送粉器和氮气对喷涂焰流进行降温,实现低温超音速火焰喷涂制备了铜涂层,并进行了涂层 X射线衍射、SEM形貌分析、能谱分析、结构分析和涂层导电性能研究.结果表明,涂层没有相变,结构稳定、致密性好、导电性能优良,体积电阻率达到 7.687 5× 10-10 Ω· m.","authors":[{"authorName":"江礼","id":"19c194c2-0560-436e-9605-d7099cba3f57","originalAuthorName":"江礼"},{"authorName":"王汉功","id":"d3866671-c35b-4527-9481-0c3baa6147e8","originalAuthorName":"王汉功"},{"authorName":"侯根良","id":"a49575dc-d3f8-423e-8c1e-b36edb5d9dfb","originalAuthorName":"侯根良"},{"authorName":"袁晓静","id":"4cabbc16-531c-4659-9e67-608e308101f6","originalAuthorName":"袁晓静"}],"doi":"10.3969/j.issn.1004-244X.2005.02.015","fpage":"48","id":"a5cb1daf-4ac4-468c-86b2-4fe96ddd6a9f","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"62beca7a-78f1-4686-acc4-dd2d47f7e459","keyword":"低温超音速火焰喷涂","originalKeyword":"低温超音速火焰喷涂"},{"id":"a08e2024-f8c5-481a-a36e-627be02bf6fb","keyword":"铜涂层","originalKeyword":"铜涂层"},{"id":"de0f31b1-2924-4929-b660-03cb25ba17f9","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"894b5080-21f4-4aaf-a020-bfb101f57592","keyword":"相结构","originalKeyword":"相结构"}],"language":"zh","publisherId":"bqclkxygc200502015","title":"低温超音速火焰喷涂铜涂层性能研究","volume":"28","year":"2005"},{"abstractinfo":"在气液无滑移假设下建立了天然气超音速凝结数理模型,研究了天然气中水蒸气的超音速凝结过程,并分析了Laval喷管扩张段半扩张角对凝结的影响.结果表明凝结模型是合理的,液滴成核只发生在喷管喉部后非常狭窄的区域,此后水滴的生长变得非常缓慢,直至喷管出口不再发生显著的增加;喷管半扩张角的大小对液滴的成核、生长有显著影响,成核位置随半扩张角的增加略向上游移动;喷管扩张段0.16°半扩张角在总压损失、出口马赫数、出口液滴尺寸等方面具有最佳的综合效果.","authors":[{"authorName":"张书平","id":"9e21ee68-0f9a-4b2d-8f52-8ce23b2dd4e3","originalAuthorName":"张书平"},{"authorName":"吴革生","id":"dfd70c6b-fc77-4633-8b92-438f7abd9d4d","originalAuthorName":"吴革生"},{"authorName":"于志刚","id":"87deca2f-c93c-4a12-a2d7-58d0b2718cd3","originalAuthorName":"于志刚"},{"authorName":"李亮","id":"7b839fb7-7bb7-4583-b72e-9d47413687f8","originalAuthorName":"李亮"},{"authorName":"白博峰","id":"fc5697b7-fdfa-4681-87da-b6ed28bff355","originalAuthorName":"白博峰"}],"doi":"","fpage":"1875","id":"4ab478df-a931-4ec3-a595-a3ce46cd604f","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"54a26f31-489f-4606-8f19-dbc47f88a622","keyword":"天然气","originalKeyword":"天然气"},{"id":"fd988cd5-7743-4109-9123-ad3815d7c790","keyword":"超音速","originalKeyword":"超音速"},{"id":"1f28afdc-f5fa-49c6-8a15-f0aa165b73cd","keyword":"凝结","originalKeyword":"凝结"},{"id":"d6875cdc-6e24-47bf-a8f7-7a4bb33763b8","keyword":"喷管","originalKeyword":"喷管"}],"language":"zh","publisherId":"gcrwlxb200811019","title":"含湿天然气超音速凝结研究","volume":"29","year":"2008"},{"abstractinfo":"采用光学显微镜、电子扫描显微镜研究了超音速电弧喷涂铝涂层的显微组织结构及喷涂粒子状态;采用拉伸试验和硬度计测试了涂层的结合强度、硬度.采用中性盐雾试验对铝涂层的耐腐蚀性进行实验,结果表明超音速电弧喷涂铝涂层孔隙率低、组织致密,结合强度和硬度较高,耐腐蚀性能优越.铝、Ac铝合金涂层的耐腐蚀性能几乎相同.","authors":[{"authorName":"杨晖","id":"5b1e101d-a8cc-402b-aba8-12ad8fc37682","originalAuthorName":"杨晖"},{"authorName":"王汉功","id":"6be2a4f7-2168-4621-a74a-b951bf4b425b","originalAuthorName":"王汉功"},{"authorName":"刘学元","id":"23471b98-5089-415c-a1a2-649d3c327d92","originalAuthorName":"刘学元"},{"authorName":"苏勋家","id":"1170edad-ce35-4390-b343-55442d72f844","originalAuthorName":"苏勋家"},{"authorName":"郭晓华","id":"df1ff0c1-7d5a-4664-9e9d-56d6d47a2d41","originalAuthorName":"郭晓华"}],"doi":"10.3969/j.issn.1002-6495.2000.04.006","fpage":"215","id":"d5c5e02a-59a9-4a3b-b4b4-37792babbb59","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"5926c12f-ab08-44ab-a85f-485a885965e1","keyword":"电弧喷涂","originalKeyword":"电弧喷涂"},{"id":"7a8efd70-fa37-496d-a26b-35f664a53b63","keyword":"涂层","originalKeyword":"涂层"},{"id":"2bf22924-044d-43ec-af15-d118835c47f5","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"f62fb6b4-efc3-406a-9344-1f47df0da7ff","keyword":"腐蚀性","originalKeyword":"腐蚀性"}],"language":"zh","publisherId":"fskxyfhjs200004006","title":"超音速电弧喷涂铝涂层的耐蚀特性","volume":"12","year":"2000"},{"abstractinfo":"高速蒸汽射入过冷水中形成连续的蒸汽区称为汽羽,汽羽穿透长度是反映蒸汽射流换热特性的重要指标.本文对音速与超音速蒸汽浸没稳定射流核心汽羽区的穿透长度进行了实验研究.实验表明:汽羽的无量纲穿透长度随着蒸汽质量流率的增大和过冷水温度的上升而逐渐增大;超音速蒸汽射流的无量纲穿透长度要小于音速蒸汽射流;超音速蒸汽射流的无量纲穿透长度随着对应喷嘴设计压比的减小而减小.根据实验数据拟合出新的无量纲穿透长度实验关联式,其计算值与实验值误差小于士15%.","authors":[{"authorName":"袁方","id":"24bc99b7-1ad7-44e1-8e0f-ba7931b18ec7","originalAuthorName":"袁方"},{"authorName":"樊鹏飞","id":"dd8f759b-d96f-4ed9-b059-e636f6ee0f6c","originalAuthorName":"樊鹏飞"},{"authorName":"吴林飞","id":"085f434a-8257-4c88-a5d2-c3626b897103","originalAuthorName":"吴林飞"},{"authorName":"赵全斌","id":"ec359622-4a4a-4a9b-afb9-46a1ce3c5729","originalAuthorName":"赵全斌"},{"authorName":"陈伟雄","id":"a4bafe48-f786-4e55-b1a7-144c95c19c80","originalAuthorName":"陈伟雄"},{"authorName":"种道彤","id":"443c1072-b39c-467b-a7ca-cc93ec545d2f","originalAuthorName":"种道彤"},{"authorName":"严俊杰","id":"86930253-e766-4c8a-bb80-e0b73682c3d3","originalAuthorName":"严俊杰"}],"doi":"","fpage":"2169","id":"f638ddf7-fbbb-4ce0-b0e0-f3196c506174","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"727a4eb4-dd50-44ed-80ba-e82d760e2c57","keyword":"浸没射流","originalKeyword":"浸没射流"},{"id":"62e69911-0a4d-42be-9540-3a32e199f0e5","keyword":"汽羽","originalKeyword":"汽羽"},{"id":"377dd1e9-c195-44dd-9e57-bd33414ea51c","keyword":"无量纲穿透长度","originalKeyword":"无量纲穿透长度"}],"language":"zh","publisherId":"gcrwlxb201510020","title":"音速与超音速蒸汽浸没射流穿透长度的研究","volume":"36","year":"2015"},{"abstractinfo":"从超音速等离子喷涂工艺特点和涂层耐磨性能方面综述了超音速等离子喷涂耐磨涂层的研究进展.总结了超音速等离子喷涂技术在航空航天、石油机械等零部件制造和修复中的应用,并展望了超音速等离子喷涂的发展方向.","authors":[{"authorName":"欧献","id":"9184cdd7-0b8b-4660-901b-c3aaa2774e86","originalAuthorName":"欧献"},{"authorName":"邓畅光","id":"05552743-3df0-4aa5-962e-55eb82f757bf","originalAuthorName":"邓畅光"},{"authorName":"王日初","id":"c098bb78-b6a8-4095-8f90-88c8e6e96dc1","originalAuthorName":"王日初"},{"authorName":"毛杰","id":"42828cb5-f258-4fb2-b26b-601ce674242a","originalAuthorName":"毛杰"}],"doi":"","fpage":"104","id":"ec0bf76b-dcb0-4df0-9ca3-0ff99d72f91d","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1240b330-20c0-4695-bb0c-13929eaa4d31","keyword":"超音速等离子喷涂","originalKeyword":"超音速等离子喷涂"},{"id":"130011de-ee80-414b-bc4f-e5c4cfca76ae","keyword":"耐磨涂层","originalKeyword":"耐磨涂层"},{"id":"68bc6dd8-fc55-4fe5-a665-07feb9ca3416","keyword":"耐磨性能","originalKeyword":"耐磨性能"}],"language":"zh","publisherId":"cldb2013z1030","title":"超音速等离子喷涂涂层耐磨性能研究进展","volume":"27","year":"2013"},{"abstractinfo":"超音速火焰喷涂作为热喷涂领域的新技术具有粒子飞行速度高,涂层质量好等优点, 重点从以下三个方面对国内外超音速火焰喷涂理论和技术进行了综述:超音速火焰喷涂过程粒子束的加热与加速行为、超音速火焰喷枪设计与焰流的数值模拟以及超音速火焰喷涂技术的应用等,从而为超音速火焰喷涂技术在我国的开发应用提供参考与依据.","authors":[{"authorName":"王志健","id":"e19093b5-d2d2-4f9e-af21-e56d74e33c86","originalAuthorName":"王志健"},{"authorName":"田欣利","id":"c45edc3e-0cef-432f-84da-f0a28188fdbd","originalAuthorName":"田欣利"},{"authorName":"胡仲翔","id":"2b78809f-e373-4811-a29e-42e05191daa3","originalAuthorName":"胡仲翔"},{"authorName":"谢风宽","id":"ab510faf-2df9-4cc9-a183-15ad0884ae16","originalAuthorName":"谢风宽"}],"doi":"10.3969/j.issn.1004-244X.2002.03.019","fpage":"63","id":"480b435e-7419-4068-b93f-d08938c92bcb","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"b1a94c45-426e-47ed-a066-2c937a9e5777","keyword":"超音速喷涂","originalKeyword":"超音速喷涂"},{"id":"28b4f99a-68aa-4c5a-b562-f95d57b86926","keyword":"喷枪","originalKeyword":"喷枪"},{"id":"97993f8b-b1d4-44e3-a048-ab62d3c23ee1","keyword":"涂层性能","originalKeyword":"涂层性能"}],"language":"zh","publisherId":"bqclkxygc200203019","title":"超音速火焰喷涂理论与技术的研究进展","volume":"25","year":"2002"}],"totalpage":73,"totalrecord":727}