{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用磁控溅射方法在1Cr18Ni9Ti不锈钢基体上沉积Ti-Si-N纳米薄膜.结果发现:随着Si含量增加,薄膜的晶粒尺寸逐渐变小,晶粒尺寸范围在3 nm~20 nm之间.薄膜的显微硬度相对于TiN有明显增加,最大硬度可达43.5GPa.Si元素的加入亦改善了膜基结合强度.同时发现,Ti-Si-N纳米薄膜的摩擦系数和比磨损率随着Si含量的增加先减小后增加,其高温摩擦系数明显低于常温,但比磨损率却有显著提高.","authors":[{"authorName":"牛新平","id":"89782c82-76ca-49fe-86a5-0aa1bd3f041e","originalAuthorName":"牛新平"},{"authorName":"王昕","id":"d7781976-306e-4b3d-87a2-bda47e77f39a","originalAuthorName":"王昕"},{"authorName":"马胜利","id":"133c6b34-508e-4f33-92c3-ce894f7f4f7a","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"403e92a4-8c11-4c89-b819-2ecdf7fe6164","originalAuthorName":"徐可为"},{"authorName":"刘维民","id":"e7b31a6d-1a6a-42dc-8a05-80f3d7156b58","originalAuthorName":"刘维民"}],"doi":"","fpage":"1882","id":"e70c4fc6-af69-453f-adaf-2c992a986237","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"957f6882-ea75-44c0-acf5-df7bdacfbae2","keyword":"Ti-Si-N纳米薄膜","originalKeyword":"Ti-Si-N纳米薄膜"},{"id":"d862aa15-8257-4c09-9cf5-4df6e00d4eff","keyword":"显微硬度","originalKeyword":"显微硬度"},{"id":"1b3be6ba-da1d-47a0-9cd4-a650990cb3e3","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"84fe8162-10e4-4fb0-8166-349306927df9","keyword":"摩擦系数","originalKeyword":"摩擦系数"}],"language":"zh","publisherId":"xyjsclygc200512009","title":"磁控溅射制备Ti-Si-N纳米薄膜的摩擦磨损性能","volume":"34","year":"2005"},{"abstractinfo":"综述了Ti-Si-N超硬纳米复合薄膜结构形式的研究进展.介绍了研究者对Si原子在Ti-Si-N中形成的晶界是否为晶态的认识与研究,阐述了Si原子在Ti-Si-N中所形成的界面结构形式的研究现状以及Ti-Si-N薄膜沉积过程中的形成机制,并展望了Ti-Si-N超硬纳米复合薄膜今后的研究方向.","authors":[{"authorName":"任元","id":"f8f786c5-1e21-42d0-ba79-4c4abaa0aafc","originalAuthorName":"任元"},{"authorName":"刘学杰","id":"81968326-4360-46b2-9d9b-66e9bc721881","originalAuthorName":"刘学杰"},{"authorName":"谭心","id":"4cc2e2c1-6e47-41b3-a195-f2dd83a58fc5","originalAuthorName":"谭心"},{"authorName":"郭金鸽","id":"c08f6cc2-63d2-4893-814a-3834403c715d","originalAuthorName":"郭金鸽"},{"authorName":"孙士阳","id":"d3fae3f8-ab96-4100-a46e-572560bdfd62","originalAuthorName":"孙士阳"}],"doi":"","fpage":"94","id":"f9a1d60f-6a2c-43ee-a51b-bbb456a0a8c7","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"99a7ab06-88f2-4a33-8b9c-05033144bce0","keyword":"Ti-Si-N薄膜","originalKeyword":"Ti-Si-N薄膜"},{"id":"d04ed00c-a57f-4a0a-bd4b-bebda8079b75","keyword":"纳米复合结构","originalKeyword":"纳米复合结构"},{"id":"8476c2b8-84b1-40dd-bd23-f96b85ec65e0","keyword":"界面结构","originalKeyword":"界面结构"}],"language":"zh","publisherId":"cldb2012z1025","title":"超高硬度纳米复合薄膜Ti-Si-N结构的研究进展","volume":"26","year":"2012"},{"abstractinfo":"用工业型脉冲直流等离子体增强化学气相沉积技术,在高速钢(W18Cr4V)表面沉积了Ti-Si-N复合薄膜,研究了Ti-Si-N复合薄膜的微观组织和力学性能.结果显示,薄膜相结构为纳米晶TiN和纳米晶或非晶TiSi2以及非晶相Si3N4;在Si含量为5.0 at%~28.0 at%范围内,薄膜的晶粒尺寸逐渐变大;Ti-Si-N薄膜的显微硬度相对于TiN有明显增加,最高硬度可达40 GPa;高温退火后,Ti-Si-N纳米复合薄膜的显微硬度与晶粒尺寸在800℃高温下仍然保持稳定.","authors":[{"authorName":"牛新平","id":"75b802b5-7298-4bf2-a385-8fd5fe8cff9c","originalAuthorName":"牛新平"},{"authorName":"马大衍","id":"67b600a8-4116-40b6-bf64-07278b07dca9","originalAuthorName":"马大衍"},{"authorName":"马胜利","id":"ca241e64-b783-4af5-aec8-267ad14b53e0","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"7ac4d569-d792-46bf-abfc-19ba7d926926","originalAuthorName":"徐可为"}],"doi":"","fpage":"1751","id":"b9f98ff0-d458-4104-bcd5-c7d762c0a179","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"21e806bc-fa1f-4624-aae6-f6f0b893c555","keyword":"Ti-Si-N","originalKeyword":"Ti-Si-N"},{"id":"cdc3c095-69c7-4774-adef-08ae0a56d30e","keyword":"纳米复合薄膜","originalKeyword":"纳米复合薄膜"},{"id":"129f9000-7983-4b32-b39a-dc7089d638bc","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"9584f3c9-3862-478e-a191-40df50d563cb","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"xyjsclygc200511017","title":"Ti-Si-N纳米复合薄膜的结构与性能","volume":"34","year":"2005"},{"abstractinfo":"用脉冲直流等离子体增强化学气相沉积(PCVD)方法在高速钢(HSS)基体上制备了Ti-Si-N薄膜,重点从不同温度退火后薄膜相结构、晶粒尺寸和显微硬度的变化等方面,探讨了不同Si含量的Ti-Si-N薄膜的高温热稳定性.结果表明:Ti-Si-N薄膜在900℃以内退火处理后,晶粒尺寸和显微硬度并无明显突变,尤其是Si含量较低时,在800℃,晶粒尺寸和显微硬度几乎没有变化,表明Ti-Si-N薄膜具有非常良好的高温热稳定性,这可能与薄膜相形成在高温下仍为调幅分解有关.","authors":[{"authorName":"徐建华","id":"ac222343-570e-4839-aa19-db592fc58327","originalAuthorName":"徐建华"},{"authorName":"马大衍","id":"416243cb-a3de-41ea-9d2f-da5157564be8","originalAuthorName":"马大衍"},{"authorName":"马胜利","id":"ef6967b5-5285-44b7-97eb-5e21e4e0a8f0","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"587dce58-8f8f-4c40-8060-af3649bbac81","originalAuthorName":"徐可为"}],"doi":"","fpage":"1778","id":"a56ae960-68cd-4eba-9011-9b1018507cc0","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e0137792-4e56-4b36-829a-d107727578c9","keyword":"等离子体增强化学气相沉积(PCVD)","originalKeyword":"等离子体增强化学气相沉积(PCVD)"},{"id":"a043dd64-910b-463e-9584-aab9764c7206","keyword":"Ti-Si-N薄膜","originalKeyword":"Ti-Si-N薄膜"},{"id":"57f33b2b-42e8-4b7a-82e7-0f4a281d9e54","keyword":"微观结构,高温热稳定性","originalKeyword":"微观结构,高温热稳定性"}],"language":"zh","publisherId":"xyjsclygc200511024","title":"Ti-Si-N纳米复合超硬薄膜的高温热稳定性","volume":"34","year":"2005"},{"abstractinfo":"用直流等离子体增强化学气相沉积(PCVD)方法在不锈钢基体上制备了Ti-Si-N硬质纳米复合薄膜,研究了Si含量对薄膜硬度的影响及高温退火对薄膜晶粒尺寸及其硬度的影响.结果表明:薄膜的硬度随着Si含量的增加有先增大后减小的趋势,最大硬度可达70 GPa以上.薄膜表现出了较高的热稳定性能,对于晶粒尺寸在4 nm以下的薄膜,Ti-Si-N薄膜的纳米结构和硬度可以维持在1000℃以上.沉积态薄膜的晶粒尺寸是影响薄膜再结晶温度的主要因素.薄膜的高热稳定性是由于沉积过程中发生的自发调幅分解形成了纳米复合结构,偏析使得纳米晶晶界具有强的热力学稳定性.","authors":[{"authorName":"马大衍","id":"daf8f72b-dddd-4e5e-98b5-2a0c2d00f068","originalAuthorName":"马大衍"},{"authorName":"马胜利","id":"d23937f9-fa23-4d28-81cc-545711b2aa75","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"2e278e1c-94cc-4c51-ab58-8d5cb7b04bf3","originalAuthorName":"徐可为"},{"authorName":"S.Veprek","id":"ff44c10f-76ec-4099-99a1-745fe550b559","originalAuthorName":"S.Veprek"}],"doi":"10.3321/j.issn:1005-3093.2004.06.010","fpage":"617","id":"b935dce3-914c-48f8-b2d1-87dbb287fc4a","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"62841368-a287-4fc9-adbe-67629e5e672b","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"157bed19-492f-430d-8565-5d2e44b6ed76","keyword":"纳米薄膜","originalKeyword":"纳米薄膜"},{"id":"4b480309-14bd-44f0-96ad-3334ad6e060d","keyword":"PCVD","originalKeyword":"PCVD"},{"id":"7305b57d-e180-4bab-b7bc-2d65dfa70199","keyword":"硬度","originalKeyword":"硬度"},{"id":"0e2d30e0-db43-4c1a-a696-3d587e469c4d","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"clyjxb200406010","title":"纳米Ti-Si-N薄膜的高温热稳定性","volume":"18","year":"2004"},{"abstractinfo":"用反应磁控溅射方法,在不锈钢表面沉积Ti-Si-N薄膜.用原子力显微镜观察薄膜的表面形貌,Ti-Si-N颗粒尺寸小于0.1 μm,用亚微压入仪测试薄膜硬度,当硅的摩尔分数为9.6%时,薄膜硬度出现最大值47 GPa.球-盘式摩擦磨损结果表明,Ti-Si-N薄膜的耐磨性能明显优于TiN薄膜,加入少量硅元素后,TiN薄膜的抗磨损性能有显著提高,但Ti-Si-N薄膜的室温摩擦系数较高(0.6~0.8),高温下摩擦系数也仅轻微降低(550℃,0.5~0.6).由于Ti-Si-N薄膜的摩擦系数可能与磨损中氧化物生成量的增加有关,常温下Ti-Si-N薄膜的摩擦系数随硅摩尔分数的增加而增大,而高温下Ti-Si-N薄膜的摩擦系数随硅含量上升而降低.","authors":[{"authorName":"马大衍","id":"43b0d856-af66-404a-a676-40e4117645f4","originalAuthorName":"马大衍"},{"authorName":"马胜利","id":"292d3e93-b67d-4b63-bb34-13b438e9a2ab","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"628d2b06-779f-4a2f-b975-6e8b1097f32f","originalAuthorName":"徐可为"},{"authorName":"","id":"d2efb3a5-9bb1-42b9-ba43-954e5cf57ef2","originalAuthorName":""}],"doi":"","fpage":"1308","id":"46f174de-abbb-4bee-a418-9fbe0b8e27d8","issue":"8","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"6becc2c5-2081-4761-bfba-0a69f93c7462","keyword":"Ti-Si-N薄膜","originalKeyword":"Ti-Si-N薄膜"},{"id":"5fce430e-7d1a-4267-be1c-eac078d3b248","keyword":"反应磁控溅射","originalKeyword":"反应磁控溅射"},{"id":"656bd6c7-98df-4b97-80e6-d278d757afe1","keyword":"摩擦学","originalKeyword":"摩擦学"}],"language":"zh","publisherId":"zgysjsxb200408009","title":"反应磁控溅射制备Ti-Si-N薄膜的摩擦磨损性能","volume":"14","year":"2004"},{"abstractinfo":"为了准确地实现Ti-Si-N纳米复合薄膜生长过程动力学蒙特卡罗(KMC)仿真,采用简单原子之间的有效势拟合了第一性原理计算单粒子在TiN(001)表面的吸附作用和迁移行为.通过计算分别获得Ti、Si、N单粒子沉积在TiN(001)表面有效势的计算参数a、r0和u0.Ti、Si、N单粒子在TiN(001)表面吸附能和迁移激活能拟合相对误差均小于5%,Ti、Si、N单粒子在TiN(001)表面绕2N2Ti岛迁移激活能相对误差小于10%.对势Morse势可以描述简单键性的作用力,对于较复杂的键性其计算原子之间相互作用的准确度降低.","authors":[{"authorName":"刘学杰","id":"4a6d2fb8-ab63-433d-874b-ffa3a1456256","originalAuthorName":"刘学杰"},{"authorName":"任元","id":"9757f286-6b29-43a5-9d02-6da6cb1cb1f0","originalAuthorName":"任元"},{"authorName":"孙士阳","id":"f5c488ad-1519-40f2-a051-8e4900195fc4","originalAuthorName":"孙士阳"},{"authorName":"谭心","id":"70f22521-715a-4ca9-8c14-d738d7fdf711","originalAuthorName":"谭心"},{"authorName":"贾慧灵","id":"b7bf8b20-86d9-4e93-b28b-66205ca3f687","originalAuthorName":"贾慧灵"}],"doi":"","fpage":"149","id":"cdba20c4-316e-4998-b2b1-cf8253b23784","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b0e6757d-3ce1-4c32-b6c6-ef0e377a8057","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"f70ef7ed-3936-4534-8ba2-2a708ed8a3ae","keyword":"有效作用势","originalKeyword":"有效作用势"},{"id":"df5053ca-101f-45dc-a709-190b2f2f0dfa","keyword":"Ti-Si-N薄膜","originalKeyword":"Ti-Si-N薄膜"},{"id":"8ba394d4-0dc6-45bd-993e-346a50f29ea5","keyword":"势能面","originalKeyword":"势能面"},{"id":"f4065c41-ee4b-4281-bc53-0b00f2e6d215","keyword":"拟合","originalKeyword":"拟合"}],"language":"zh","publisherId":"cldb201120039","title":"Ti-Si-N纳米复合薄膜KMC仿真中有效作用势的拟合","volume":"25","year":"2011"},{"abstractinfo":"用工业型脉冲直流等离子体增强化池气相沉积(PCVD)设备, 在高速钢(W18Cr4V)表面沉积Ti-Si-N三元薄膜, 研究了不同N2流量对薄膜组织及性能的影响. 结果表明: 随N2流量增大, 膜层沉积速率及膜层中Si含量减少, 薄膜组织趋于致密, 膜层颗粒尺寸明显减小, 划痕法临界载荷和显微硬度显著增加, 硬度最高可达50 GPa以上. 研究发现, 对应N2流量, 薄膜相组成发生变化, 依次存在有TiN/a-Si3N4/Si, TiN/a-Si3N4/TiSi2/Si, TiN/a-Si3N4/TiSi2三种相组成形式. 分析认为, 低N2或高Si效果不佳的原因在于直流PCVD 是以工件为阴极, 膜层中过多的Si3N4和Si将严重劣化阴极的电导性, 致使膜层疏松, 说明脉冲直流PCVD与射频PCVD存在很大的区别.","authors":[{"authorName":"马大衍","id":"63ee78fb-7567-4cb3-b022-2a314698ce78","originalAuthorName":"马大衍"},{"authorName":"王昕","id":"2f12ff6b-d596-4abd-bbd2-dc9cfb21794e","originalAuthorName":"王昕"},{"authorName":"马胜利","id":"9542ae49-e29e-4c16-9ef0-1aa8fdaab40e","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"00517d1c-a2c4-4536-a274-42d2eec0d195","originalAuthorName":"徐可为"}],"categoryName":"|","doi":"","fpage":"1047","id":"6b44b7d0-b6d2-434e-b4bc-a6c27bb1546a","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"8aeadd50-0664-43a3-ba7e-caf50b0b30ec","keyword":"PCVD","originalKeyword":"PCVD"},{"id":"cd9dd55d-f6dc-4a19-b6c5-3a23ee147b89","keyword":"null","originalKeyword":"null"},{"id":"264c82d9-c77e-4a54-94fe-0e623e93b9ca","keyword":"null","originalKeyword":"null"},{"id":"daef8802-142f-4b98-ae2c-8a0e7eb5da3a","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_10_5","title":"Ti-Si-N纳米复相薄膜及Si含量对脉冲直流PCVD镀膜质量的影响","volume":"39","year":"2003"},{"abstractinfo":"用工业型脉冲直流等离子体增强化学气相沉积(PCVD)设备,在高速钢(W18Cr4V)表面沉积Ti-Si-N三元薄膜,研究了不同N2流量对薄膜组织及性能的影响.结果表明:随N2流量增大,膜层沉积速率及膜层中Si含量减少,薄膜组织趋于致密,膜层颗粒尺寸明显减小,划痕法临界载荷和显微硬度显著增加,硬度最高可达50 GPa以上.研究发现,对应N2流量,薄膜相组成发生变化,依次存在有TiN/a-Si3N4/Si,TiN/a-Si3N4/TiSi2/Si,TiN/a-Si3N4/TiSi2三种相组成形式.分析认为,低N2或高Si效果不佳的原因在于直流PCVD是以工件为阴极,膜层中过多的Si3N4和Si将严重劣化阴极的电导性,致使膜层疏松,说明脉冲直流PCVD与射频PCVD存在很大的区别.","authors":[{"authorName":"马大衍","id":"b5b58c3b-3e2a-48b8-9f49-1904697349bd","originalAuthorName":"马大衍"},{"authorName":"王昕","id":"da367403-9cb7-4ff5-890a-3acaae92b03a","originalAuthorName":"王昕"},{"authorName":"马胜利","id":"2d4e42e6-80ae-4a8c-a8aa-62f667d92d24","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"760556c9-2fc8-4347-90f2-e58640c1c4ab","originalAuthorName":"徐可为"}],"doi":"10.3321/j.issn:0412-1961.2003.10.007","fpage":"1047","id":"1a6e8fea-2025-446e-bf88-1d189bbeeaf9","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"598ab089-6c19-479f-ae2c-02cf570b0133","keyword":"PCVD","originalKeyword":"PCVD"},{"id":"3f1e57d2-67ba-4385-b4c9-e9d0e806bdf1","keyword":"Ti-Si-N","originalKeyword":"Ti-Si-N"},{"id":"801f4096-b6b7-4177-8b6f-b6332cab8fe9","keyword":"相组成","originalKeyword":"相组成"},{"id":"c78b8b90-9f99-45e8-a894-94b548cdcb4c","keyword":"临界载荷","originalKeyword":"临界载荷"}],"language":"zh","publisherId":"jsxb200310007","title":"Ti-Si-N纳米复相薄膜及Si含量对脉冲直流PCVD镀膜质量的影响","volume":"39","year":"2003"},{"abstractinfo":"用脉冲直流等离子体辅助化学气相沉积(PCVD)技术在盲孔的底部获得Ti-Si-N薄膜.用扫描电子显微镜(SEM),X射线能量色散谱仪(EDX),X射线衍射仪(XRD),球痕法(ball-crater),显微硬度计(Hv)和涂层压入仪(Pc)分析不同盲孔深度处薄膜的微观结构和力学性能.结果表明,随着盲孔深度的增加,Ti-Si-N薄膜中Ti与Si元素相对比例降低,薄膜厚度下降,薄膜与基体的结合强度有很大提高,膜基复合显微硬度下降,而薄膜的本征硬度在盲孔深度为20 mm处出现最大值.","authors":[{"authorName":"马青松","id":"90ee3f17-5078-4d7f-83c1-4dbc6ce22981","originalAuthorName":"马青松"},{"authorName":"马胜利","id":"bebaca6f-fd6b-4441-8490-7c6706187cbc","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"1e225bea-7572-43f2-88bf-f4919a740d78","originalAuthorName":"徐可为"}],"doi":"","fpage":"738","id":"edc4c370-a673-4c73-942c-e8b866bd06d3","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4c2ef88a-dabe-4a33-b0c1-cd4895a43788","keyword":"脉冲直流PCVD","originalKeyword":"脉冲直流PCVD"},{"id":"1ef36a66-f6de-4488-b75f-d2f466e6f013","keyword":"Ti-Si-N","originalKeyword":"Ti-Si-N"},{"id":"182d818f-e414-4c76-8918-0d243b81d7da","keyword":"复杂型腔","originalKeyword":"复杂型腔"}],"language":"zh","publisherId":"xyjsclygc200505017","title":"脉冲直流PCVD技术在盲孔底部沉积Ti-Si-N薄膜","volume":"34","year":"2005"}],"totalpage":6016,"totalrecord":60151}