{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以Ti?6Al?4V合金和(TiB+La2O3)/Ti?6Al?4V 复合材料为研究对象,研究固态渗碳法对两种材料表面显微组织和硬度的影响规律。将包覆于石墨粉中的试样置于密封的石英管中,在1227 K下保温24 h,成功实现了两种材料表面渗碳处理。显微组织和物相分析结果表明,固态渗碳后基体中原位生成了TiC 增强体和Ti?C 固溶体,且扩散层中的等轴α-Ti 相的体积分数随试样深度增加呈明显降低趋势;硬度测试结果表明,两种材料渗碳表面的显微硬度与未处理材料相比都明显提高了约100%,随试样深度增加而变化的碳含量在渗碳试样中形成了约300μm 的硬化层。同时,固态渗碳对内部组织和硬度的影响很小,表明该方法是一种有效强化钛合金及其复合材料的表面处理方法。","authors":[{"authorName":"段宏强","id":"9ef35ef3-1d64-4163-ad2b-548407bedbce","originalAuthorName":"段宏强"},{"authorName":"韩远飞","id":"1d54201a-07be-40f8-bcb8-049caa795d8a","originalAuthorName":"韩远飞"},{"authorName":"吕维洁","id":"bed4e626-f74e-425c-b5b4-68163a93d5db","originalAuthorName":"吕维洁"},{"authorName":"毛建伟","id":"bd2ff460-baac-4cdc-b3d2-48ae540040e1","originalAuthorName":"毛建伟"},{"authorName":"王立强","id":"435213ee-c1d6-48c9-8932-85e429556a5f","originalAuthorName":"王立强"},{"authorName":"张荻","id":"48aae3bb-1e97-427d-9d78-a131b3be4153","originalAuthorName":"张荻"}],"doi":"10.1016/S1003-6326(16)64301-7","fpage":"1871","id":"da3ec2ce-4d13-4b2b-8a6d-cbb8a32aba24","issue":"7","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"3e5224b7-028b-45bf-8751-b2a03aecba41","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"0eaa699b-66a5-4cbc-819b-0bccfa50259a","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"02048c61-084c-41d1-9dfe-c3fc8cd390b9","keyword":"固态渗碳","originalKeyword":"固态渗碳"},{"id":"4727468b-cb40-4a6b-8e0a-5bbc52a6a6b3","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"09ffd20f-d319-4752-8e87-8f7c295f1f5e","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"zgysjsxb-e201607017","title":"固态渗碳对Ti-6Al-4V合金及其复合材料(TiB+La2O3)/Ti-6Al-4V表面显微组织和硬度的影响","volume":"26","year":"2016"},{"abstractinfo":"采用固态渗碳法,从碳浓度分布、表面碳含量、渗碳层深度和显微组织等方面着手,研究了不同渗碳温度和渗碳时间下23CrNi3Mo钢的渗碳规律及显微组织状态.结果表明,23CrNi3Mo渗碳过程中,渗碳温度选择910 ~930℃时表面碳浓度较高,利于渗碳过程中碳原子由表面向心部的扩散.在渗碳过程中,表面碳浓度应控制在0.80% ~0.90%,碳浓度≥0.90%时,在淬火过程中易出现残余奥氏体,表面硬度下降,降低钎具的使用寿命.","authors":[{"authorName":"闫永明","id":"083f0e6e-2c6f-4d38-9a81-c85341d0ab82","originalAuthorName":"闫永明"},{"authorName":"刘雅政","id":"1e94c52e-e357-4508-9db4-d985a2449fd6","originalAuthorName":"刘雅政"},{"authorName":"周乐育","id":"cd3d103b-ecdb-4b2f-afa8-77477f9111a3","originalAuthorName":"周乐育"},{"authorName":"徐盛","id":"5bb3fde7-ab30-4282-86b2-a91a3aab3fe0","originalAuthorName":"徐盛"},{"authorName":"王国存","id":"7b9a1b93-ab89-440c-8f73-f5e08d898d04","originalAuthorName":"王国存"}],"doi":"","fpage":"102","id":"91889afe-47da-4ca1-a192-ff29670b098b","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"79d562ec-a5a3-4b27-bbea-038f9437f42e","keyword":"23CrNi3Mo","originalKeyword":"23CrNi3Mo"},{"id":"f2f4b050-35ec-4267-9b70-5750b371abc4","keyword":"固态渗碳","originalKeyword":"固态渗碳"},{"id":"6bc1f838-18a6-4715-bff4-9beed36f5617","keyword":"渗碳层深度","originalKeyword":"渗碳层深度"},{"id":"a9a24971-7513-4060-b0cd-a9a7fbd60e29","keyword":"渗碳温度","originalKeyword":"渗碳温度"},{"id":"ba7e3d9e-2d8d-4984-ab42-dafd3c37d06f","keyword":"渗碳时间","originalKeyword":"渗碳时间"},{"id":"a825c812-50b1-4d5b-adc5-43584d9021da","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"}],"language":"zh","publisherId":"clkxygy201305017","title":"钎具钢23CrNi3Mo渗碳规律及显微组织研究","volume":"21","year":"2013"},{"abstractinfo":"研究了Ti-6Al-4V在800℃和1 000℃下固态渗碳化硼20 h后的渗层显微组织以及对硬度等的影响.结果表明:渗层在表面为致密分布的化合物层,其成分主要为TiC、TiB以及TiB2等硬质相,而在基体内部则形成沿晶界分布的板条状或等轴状的颗粒扩散层;表面碳化硼处理可以显著提高Ti-6Al-4V的表面硬度,由359 HV提高到了664 HV,并且可以得到良好的表面硬、芯部软的硬度梯度;断口形貌分析发现材料由韧性断裂转变成脆性断裂.","authors":[{"authorName":"何利舰","id":"ca448d60-93f6-4ea8-af36-df61678d1b5f","originalAuthorName":"何利舰"},{"authorName":"张小农","id":"0b03f341-2a03-4377-8968-d722b1e86238","originalAuthorName":"张小农"},{"authorName":"童承达","id":"5b47839f-917e-46fa-9778-933e0cd0a69f","originalAuthorName":"童承达"}],"doi":"10.3969/j.issn.1000-3738.2006.01.011","fpage":"36","id":"1cef5d34-a255-401b-adab-9f3a351aaab6","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"dd3ce951-118a-40f7-b7f9-65b3a99da288","keyword":"Ti-6Al-4V","originalKeyword":"Ti-6Al-4V"},{"id":"04468dbb-67cc-4ff6-8b3b-b049003793ed","keyword":"碳化硼","originalKeyword":"碳化硼"},{"id":"8aee1ed8-0768-4591-88e3-de06d46a54cb","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"jxgccl200601011","title":"固态渗碳化硼对Ti-6Al-4V显微组织和性能的影响","volume":"30","year":"2006"},{"abstractinfo":"采用通用渗碳剂和新型高聚物渗碳剂,通过固态渗碳法对NiTi合金进行了表面处理。结果表明,采用两种渗碳剂在NiTi合金表面均可以获得TiC+TiCx 两相构成的钛化物渗层。与通用渗碳剂相比,聚合物渗碳具有渗速快、组织致密、渗层相结构均匀、硬化层中TiC 含量增加、钛化物层与基体的结合良好等特点。经过固体渗碳处理后,NiTi合金在3.5%NaCl溶液中的抗腐蚀性能得到了很大提高,高聚物渗碳的保护作用更为显著.","authors":[{"authorName":"姜训勇","id":"00c6c6bc-7bf0-4a72-aeb4-a4bccc3e47b9","originalAuthorName":"姜训勇"},{"authorName":"高学平","id":"3a095931-0fe6-4d33-931a-8ebb4a8c7aa5","originalAuthorName":"高学平"},{"authorName":"宋德瑛","id":"16ebe65b-c369-4127-b3d9-e32d2266c5cc","originalAuthorName":"宋德瑛"}],"categoryName":"|","doi":"","fpage":"962","id":"a1338364-aa95-441b-bfb3-eaab93d3b2fa","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"6553a5ef-18ea-4a66-8924-be045eb5fec9","keyword":"NiTi合金","originalKeyword":"NiTi合金"},{"id":"50038c4e-e296-45bf-b7b9-c25a5ee846d9","keyword":"null","originalKeyword":"null"},{"id":"9d624cda-7225-4580-a0b2-5d3fae3758a6","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_9_9","title":"普通渗碳剂与新型高聚物渗碳剂进行NiTi合金固体渗碳的对比","volume":"39","year":"2003"},{"abstractinfo":"采用通用渗碳剂和新型高聚物渗碳剂,通过固态渗碳法对NiTi合金进行了表面处理.结果表明,采用两种渗碳剂在NiTi合金表面均可以获得TiC+TiOx两相构成的钛化物渗层.与通用渗碳剂相比,聚合物渗碳具有渗速快、组织致密、渗层相结构均匀、硬化层中TiC含量增加、钛化物层与基体的结合良好等特点.经过固体渗碳处理后,NiTi合金在3.5%NaCl溶液中的抗腐蚀性能得到了很大提高,高聚物渗碳的保护作用更为显著.","authors":[{"authorName":"姜训勇","id":"9a0b3677-a9e0-4cbe-961d-a33bb0579515","originalAuthorName":"姜训勇"},{"authorName":"高学平","id":"5cc1f64c-3077-412b-9670-8350e923a9f6","originalAuthorName":"高学平"},{"authorName":"宋德瑛","id":"72bd7acb-b578-47b2-9b79-5c2bf8b18295","originalAuthorName":"宋德瑛"}],"doi":"10.3321/j.issn:0412-1961.2003.09.013","fpage":"962","id":"523980b2-1cbf-4a11-afea-f9fee664b1d1","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"fb418c68-66f6-41eb-a140-5585b6e38c31","keyword":"NiTi合金","originalKeyword":"NiTi合金"},{"id":"d2c401e9-c0d3-40b0-88e2-6607a4f37752","keyword":"固体渗碳","originalKeyword":"固体渗碳"},{"id":"d21f1e20-3932-46a9-a2b8-6c257d6f9a55","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"8bdbc98f-be10-4870-a4c4-758451225742","keyword":"渗碳剂","originalKeyword":"渗碳剂"},{"id":"ffb86479-8225-4964-870f-dca0a8a4214a","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"jsxb200309013","title":"普通渗碳剂与新型高聚物渗碳剂进行NiTi合金固体渗碳的对比","volume":"39","year":"2003"},{"abstractinfo":"采用\"渗碳-温挤压\"工艺成形直齿轮,可使齿轮性能大幅度地提高,但经渗碳处理后的坯料,在塑性成形齿轮时,由于渗碳层流动不均匀,使齿面上不同部位渗碳层厚度不同,而沿齿面的渗碳层厚度应依据从齿顶到齿根不同工作特性的要求合理分布.通过分析齿轮失效的主要原因,提出了齿面上不同部位渗碳层厚度的基本要求,建立了直齿轮渗碳层厚度分布模型,并根据该模型,提出了采用\"渗碳-温挤压\"工艺加工直齿轮时坯料所需渗碳层的计算方法.研究表明:所建立的直齿轮渗碳层厚度分布模型为新工艺的实施提供了完善的目标和简明的计算方法.\n","authors":[{"authorName":"冯再新","id":"3788d6c9-8208-4374-83b4-4010b9ac32f9","originalAuthorName":"冯再新"},{"authorName":"张治民","id":"ee7d2ae9-4039-4dad-85f5-456dcf2079f5","originalAuthorName":"张治民"},{"authorName":"乔俊强","id":"adda5fe5-d58f-469a-b28b-f44409f77eb4","originalAuthorName":"乔俊强"},{"authorName":"张玲娟","id":"c1da255a-6718-4b13-8b07-9bece5017bff","originalAuthorName":"张玲娟"},{"authorName":"周贤宾","id":"794fcde0-a15b-484c-8867-0fc5d960b4e1","originalAuthorName":"周贤宾"}],"doi":"10.3969/j.issn.1005-0299.2002.02.016","fpage":"175","id":"e9e72dbb-c75c-4788-8ffc-ee6b88e91d54","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"d97412cf-ddf4-41e2-856a-08d705d70452","keyword":"直齿轮","originalKeyword":"直齿轮"},{"id":"a45f3154-f5bb-4559-b917-5cecbba1dc8b","keyword":"渗碳-温挤压","originalKeyword":"渗碳-温挤压"},{"id":"49fd4e60-c344-4aaf-b6d9-43d85c3a262d","keyword":"渗碳层厚度分布模型","originalKeyword":"渗碳层厚度分布模型"}],"language":"zh","publisherId":"clkxygy200202016","title":"直齿轮“渗碳-温挤”渗碳层厚度分布模型","volume":"10","year":"2002"},{"abstractinfo":"介绍了乙烯裂解炉管的渗碳过程及其危害性.从炉管材料的成分设计、炉管的表面处理、乙烯裂解工艺的控制等方面讨论了炉管的抗渗碳措施及其研究进展.","authors":[{"authorName":"谢飞","id":"981345d6-55df-44b1-975e-5c020247c0c8","originalAuthorName":"谢飞"},{"authorName":"李雄","id":"cdfcc5e4-086c-472d-969a-04e274dbdfce","originalAuthorName":"李雄"},{"authorName":"张炳生","id":"bd1c26ae-9de0-4b25-95db-9a9065390664","originalAuthorName":"张炳生"},{"authorName":"胡静","id":"acf608da-6dd1-4a2f-a05d-42dfcbeeca86","originalAuthorName":"胡静"},{"authorName":"刘青林","id":"20ac817a-672e-40cb-a388-3f9643afe561","originalAuthorName":"刘青林"},{"authorName":"潘建伟","id":"c25eff35-5ec0-41ac-887e-07923314c498","originalAuthorName":"潘建伟"}],"doi":"","fpage":"24","id":"e419c08b-1379-41c2-98a5-e448b9da0da5","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"03fa7a09-d296-4d8e-9027-f249c43b458a","keyword":"乙烯裂解炉管","originalKeyword":"乙烯裂解炉管"},{"id":"67f36aa8-2cb8-459e-85f1-49f779af3af2","keyword":"渗碳","originalKeyword":"渗碳"},{"id":"eac23953-b30a-4dc4-84fe-dea05526259b","keyword":"抗渗碳","originalKeyword":"抗渗碳"}],"language":"zh","publisherId":"cldb200208008","title":"乙烯裂解炉管的渗碳与抗渗碳","volume":"16","year":"2002"},{"abstractinfo":"研究了在4Cr25Ni35Nb和4Cr35Ni45Nb两个抗渗碳合金中添加微合金化元素Ti、Al、Zr、Ce等对材料高温抗渗碳性能和高温持久性能的影响.结果表明,研制的抗渗碳新材料CHT-1、CHT-2的抗渗碳性能和持久性能均优于4Cr25Ni35WNb,并具有较好的工艺性能,其中Cr35Ni45型材料CHT-2的抗渗碳性能最优.","authors":[{"authorName":"张惠斌","id":"1310d977-ea4a-40cc-afb8-8d37a71f08c1","originalAuthorName":"张惠斌"},{"authorName":"胥继华","id":"a5231311-822f-4db1-8e58-eaa27dc3ae7c","originalAuthorName":"胥继华"},{"authorName":"路岩","id":"5afa61ec-f469-4d2e-ae57-f39b188b4ea1","originalAuthorName":"路岩"},{"authorName":"杨骥","id":"77da41d9-c2df-429c-af15-7dc5dad17a70","originalAuthorName":"杨骥"}],"doi":"","fpage":"60","id":"cac0c066-0045-469d-9ff8-eef32630ee11","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"0bd7389a-c9ed-4ed5-bd69-c46ec5018a55","keyword":"新材料","originalKeyword":"新材料"},{"id":"81b6bd82-942d-4e11-972d-66188e4ae8f1","keyword":"渗碳","originalKeyword":"渗碳"},{"id":"046d8956-3f23-4b16-9b51-6174311cf6b1","keyword":"持久性能","originalKeyword":"持久性能"}],"language":"zh","publisherId":"gt200304015","title":"抗渗碳新材料研究","volume":"38","year":"2003"},{"abstractinfo":"通过固体渗碳试验研究了加热温度对钎具用钢22Si2MnCrNi2MoA渗碳层的影响,分析了渗碳温度-碳浓度-显微硬度-残留奥氏体的关系以及残留奥氏体的控制措施.结果表明:当渗碳时间为6h时,随着渗碳温度的升高,渗碳层的碳浓度逐渐增加,碳浓度分布梯度越来越平缓.22Si2MnCrNi2MoA钢渗碳层的显微硬度-碳浓度关系符合正态分布.在渗碳处理过程中,为了使渗碳表层获得硬度很高的马氏体组织,22Si2MnCrNi2MoA钢渗碳层表面碳浓度应该控制在0.80% ~0.90%之间.当表面碳浓度超过0.80%~0.90%时,渗碳完成后需采取后续的工艺措施来消除已经存在的残留奥氏体,如采用长时间自然时效或深冷处理等.","authors":[{"authorName":"黄斌","id":"5eb24ecd-e838-4dd4-85c8-a7f25dfc8a8d","originalAuthorName":"黄斌"},{"authorName":"朱洪武","id":"cd547871-47d0-40de-8471-e9c4f251fe78","originalAuthorName":"朱洪武"},{"authorName":"杨忠","id":"e24822b5-8612-406d-975d-817015a2ceef","originalAuthorName":"杨忠"},{"authorName":"周乐育","id":"77e96969-b0e4-4680-b7ba-f0e68126a5a4","originalAuthorName":"周乐育"},{"authorName":"刘雅政","id":"6c1d1896-92e1-4bb8-acb6-f14582136d18","originalAuthorName":"刘雅政"}],"doi":"","fpage":"136","id":"02290500-394e-45ee-970b-4f3c66cf831c","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"777cfe99-a624-418e-911a-1feae22d7421","keyword":"钎具用钢","originalKeyword":"钎具用钢"},{"id":"868a4ad3-727e-42f2-aade-83d7fa41fb51","keyword":"22Si2MnCrNi2MoA","originalKeyword":"22Si2MnCrNi2MoA"},{"id":"1fb9721a-6496-4459-81d0-3c1ba768ee0a","keyword":"渗碳","originalKeyword":"渗碳"},{"id":"d73da55b-3d2b-4d4d-a260-7ecb4df6aebb","keyword":"残留奥氏体","originalKeyword":"残留奥氏体"},{"id":"8361cc96-9b2c-42b6-9a82-655f60aa2e04","keyword":"加热温度","originalKeyword":"加热温度"}],"language":"zh","publisherId":"jsrclxb201307025","title":"渗碳温度对22Si2MnCrNi2MoA钢渗碳层的影响","volume":"34","year":"2013"},{"abstractinfo":"根据钢铁材料的微合金化原理和强韧化原理,对广泛使用的含钛渗碳钢的钛含量进行了理论计算分析和优化设计,结果表明,适当降低钛含量,不影响其在渗碳过程中阻止奥氏体晶粒长大的作用,但可有效地减少或消除含钛渗碳钢中的液析氮化钛,从而提高钢材的力学性能。","authors":[{"authorName":"陈明昕","id":"4500188e-d08e-4a6b-a6f5-806da01781d4","originalAuthorName":"陈明昕"},{"authorName":"雍岐龙","id":"072d3c12-06c1-43ba-8dde-b8597e05731c","originalAuthorName":"雍岐龙"},{"authorName":"张利平","id":"502e6b23-cf8e-47bc-bf2b-0ea51ddea8e5","originalAuthorName":"张利平"},{"authorName":"赵昆渝","id":"dee62ba2-b1a0-4848-a783-eed765f352f4","originalAuthorName":"赵昆渝"},{"authorName":"裴英豪","id":"c76bf6fc-75b6-4d2a-8aad-2a7a8a9e416e","originalAuthorName":"裴英豪"}],"categoryName":"|","doi":"","fpage":"68","id":"1aa4131b-d308-43d5-b1b7-5389193f71a1","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"aee20949-4fa2-4dd0-9b20-82642763d487","keyword":"渗碳钢;钛;微合金化;液析","originalKeyword":"渗碳钢;钛;微合金化;液析"}],"language":"zh","publisherId":"0449-749X_2007_7_16","title":"渗碳钢钛含量的优化设计","volume":"42","year":"2007"}],"totalpage":210,"totalrecord":2099}