{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用四针状氧化锌晶须对RTM(树脂传递模塑)成型的玻璃纤维复合材料进行层间改性,从\"\"改性思想出发,将晶须直接引入到复合材料相对薄弱的层间部分,氧化锌晶须特殊的几何形状在层间部位形成刚性的机械\"锚接\"结构,这种物理而非化学的方式,能有效抑制复合材料的层间开裂及层间微裂纹的扩展,提高复合材料的层间剪切性能.研究结果表明,针对所选用的典型的航空用环氧树脂体系,氧化锌晶须的引入使复合材料的层间性能明显改善.","authors":[{"authorName":"刘刚","id":"f568448a-01b2-4c07-ae8d-eb0e5bc72a38","originalAuthorName":"刘刚"},{"authorName":"马宏毅","id":"a79ddb93-75d4-4b10-b93b-6a598159ce2d","originalAuthorName":"马宏毅"},{"authorName":"张代军","id":"0faf8fd7-84dc-4c0b-a5f3-c4e2f9daa2e3","originalAuthorName":"张代军"}],"doi":"10.3969/j.issn.1003-0999.2010.02.008","fpage":"27","id":"e9478b4f-ad29-4e12-b18c-54b85791c36c","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"58f73155-e6d5-4547-83d4-b06d36036baa","keyword":"","originalKeyword":"离位"},{"id":"ce40e040-a7bb-46e1-bf9c-3f01e4dd8304","keyword":"氧化锌晶须","originalKeyword":"氧化锌晶须"},{"id":"75b0fb5f-1738-493e-a52d-2340644145ca","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"blgfhcl201002008","title":"刚性三维晶须层间改性玻璃纤维复合材料研究","volume":"","year":"2010"},{"abstractinfo":"针对“”增韧预成型体的液态成型工艺性,研究了两种不同结构形式增韧层“”增韧预成型体的厚度压缩特性.分别采用多孔薄膜结构增韧层、高孔隙率无纺布结构增韧层与碳纤维织物交替铺层制备“”增韧预成型体,采用力学试验机测试其厚度压缩特性.实验结果表明,预成型体压缩过程中,在相同压力水平下,增韧层的引入会降低预成型体的纤维体积分数;不同压力水平下,预成型体的压缩行为与增韧层结构形式有关.此外,采用织物预成型体厚度压缩本构模型,对“”增韧预成型体的压缩厚度进行了预测,通过模型预测值与实验值的比较,确定了模型中的经验指数k=2时,两者吻合较好.","authors":[{"authorName":"刘刚","id":"5b36bbf8-3430-4b17-81f8-002221b4db35","originalAuthorName":"刘刚"},{"authorName":"李伟东","id":"fc0fcb86-597c-4172-8e62-ce1fb982e1cc","originalAuthorName":"李伟东"},{"authorName":"李龙","id":"3d779908-1fbf-4d73-ae62-ffb1b4ae3ca1","originalAuthorName":"李龙"},{"authorName":"肇研","id":"4d41e67e-2194-46cc-a89e-fa70527110a6","originalAuthorName":"肇研"},{"authorName":"益小苏","id":"3bf9e601-22bc-4b27-8de3-3c04d2fea6b7","originalAuthorName":"益小苏"}],"doi":"10.13801/j.cnki.fhclxb.20150619.001","fpage":"1194","id":"b1900c44-9d40-4fa1-bef6-84dc2db3d80c","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"425af05e-cc1c-4047-b432-76e513ae3e7f","keyword":"“”增韧","originalKeyword":"“离位”增韧"},{"id":"6e9a0b7b-3fe9-4153-8a1f-193d832d9935","keyword":"预成型体","originalKeyword":"预成型体"},{"id":"ec408edf-a945-41ac-9581-f972fed61815","keyword":"厚度压缩","originalKeyword":"厚度压缩"},{"id":"f43d1c26-6916-44ee-b7a1-c2a384d15bf5","keyword":"本构模型","originalKeyword":"本构模型"},{"id":"1c0767f7-6d13-4c83-b8ec-d6d778751fae","keyword":"织物","originalKeyword":"织物"}],"language":"zh","publisherId":"fhclxb201504036","title":"“”增韧预成型体压缩特性","volume":"32","year":"2015"},{"abstractinfo":"研究\"\"增韧对RTM聚酰亚胺树脂基复合材料力学以及韧性性能的影响.结果表明:当增韧剂的含量为15wt%时,经\"\"增韧复合材料的室温层问剪切强度从97.9 MP8提高到110 MPa,而玻璃化转变温度和高温(288℃)复合材料层间剪切强度略有降低.\"\"增韧后,PI-9731Es(F)/G0827复合材料的Ⅰ型层间断裂韧性(GIC)从310J/m2提高到459J/m2.经电镜分析表明,主要是由于将热塑性聚酰亚胺\"\"增韧PI-9731制备复合材料时,可以在复合材料富树脂区形成相反转结构,在裂纹扩展的过程中,包覆热塑性聚酰亚胺的PI-9731粒子发生明显地取向和变形.","authors":[{"authorName":"刘志真","id":"de2a4a20-78e1-4312-93cb-90dcafb02a1e","originalAuthorName":"刘志真"},{"authorName":"李宏运","id":"fae12397-4cbf-4afb-8339-8b312554f32a","originalAuthorName":"李宏运"},{"authorName":"邢军","id":"e08ff1eb-0dee-4dad-8a9f-7fd1f4e63e85","originalAuthorName":"邢军"},{"authorName":"益小苏","id":"8e8a451c-08a5-4ea6-9180-17b3ac4a28f4","originalAuthorName":"益小苏"},{"authorName":"杨慧丽","id":"6687cdc7-f3ec-4a67-93f3-07e1ecc0d350","originalAuthorName":"杨慧丽"},{"authorName":"王震","id":"c763c981-9728-415b-8583-2fce47265414","originalAuthorName":"王震"}],"doi":"10.3969/j.issn.1005-5053.2008.06.015","fpage":"72","id":"0c47890e-838e-4686-8892-cb98966da424","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"ee8aacfe-83f7-4877-865b-de2fa9a8158d","keyword":"聚酰亚胺复合材料","originalKeyword":"聚酰亚胺复合材料"},{"id":"c53e2040-897d-44ae-906b-fcf41b0cdb50","keyword":"RTM成形","originalKeyword":"RTM成形"},{"id":"3a4d7f23-32fa-422f-a6e4-844f1e65c44d","keyword":"\"\"增韧","originalKeyword":"\"离位\"增韧"},{"id":"3098188f-0bad-4661-8a92-ad20126136a6","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"hkclxb200806015","title":"RTM聚酰亚胺复合材料\"\"增韧技术研究","volume":"28","year":"2008"},{"abstractinfo":"采用准静态压入(Quasi-Static Indentation, QSI)实验方法对\"\"增韧复合材料层合板和未增韧层合板进行了实验研究.分析了QSI实验中层合板的损伤破坏过程,并对两类层合板的实验结果进行了对比分析.结果表明:\"\"增韧技术能够有效提升复合材料层合板的低速冲击损伤阻抗性能;准静态压入实验中,接触力-压头位移曲线上第1个接触力突降点并不对应于分层损伤的起始点;\"\"增韧层合板的增韧层能够有效延缓层间分层的出现及扩展,但当载荷接近最大接触力时,\"\"增韧层合板内部的分层损伤面积会比未增韧层合板分层损伤面积更大;当层合板发生穿透破坏时,\"\"增韧层合板试件的背部穿透损伤区域较集中,而未增韧层合板背面出现了狭长的纤维劈裂区.","authors":[{"authorName":"谢宗蕻","id":"c649ec2e-f472-4596-8770-5577ccf262a0","originalAuthorName":"谢宗蕻"},{"authorName":"张磊","id":"5052f78e-57fb-479c-9e3e-dd839248d4df","originalAuthorName":"张磊"},{"authorName":"苏霓","id":"2e658107-ed80-452d-a77f-5c7e2c578fc9","originalAuthorName":"苏霓"},{"authorName":"马宏毅","id":"e6134c85-470b-43b3-97a4-7978c762af68","originalAuthorName":"马宏毅"},{"authorName":"闫丽","id":"bc9ae612-be6e-4f07-8d2c-88efb92a05c0","originalAuthorName":"闫丽"},{"authorName":"崔海涛","id":"b56fc65e-8b47-4770-8efa-608c0d40863b","originalAuthorName":"崔海涛"}],"doi":"10.3969/j.issn.1001-4381.2011.01.010","fpage":"42","id":"98790412-0f86-46cf-b938-f828089f6db8","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"ae158c0a-87e6-4902-850e-5896a1593f60","keyword":"增韧","originalKeyword":"离位增韧"},{"id":"319f445b-07d7-48e1-8388-12cb66920941","keyword":"层合板","originalKeyword":"层合板"},{"id":"4b00bb19-8fbb-41a8-a78c-273af3cb7b8d","keyword":"损伤阻抗","originalKeyword":"损伤阻抗"},{"id":"f02dc5d2-1da7-4f9f-a309-4a9b7ec25a88","keyword":"准静态压入实验","originalKeyword":"准静态压入实验"}],"language":"zh","publisherId":"clgc201101010","title":"增韧复合材料层合板准静态压入实验研究","volume":"","year":"2011"},{"abstractinfo":"采用原位及傅里叶变换红外光谱(FTIR)法研究了固化剂为4,4'-二氨基二苯砜(DDS)的环氧树脂(E51)体系的固化动力学.结果表明,固化反应开始时,环氧基转化率在较短时间内达到较高水平;随时间的延长,环氧基转化率逐渐变慢.根据动力学方程求得反应级数为1.999,得出该反应是二级反应.比较原位法与法固化曲线得出,原位法在时间轴上是准确的,法在温度轴上是准确的.依据求得的反应活化能和反应常数确立了该固化体系的固化时间、温度及环氧基转化率的关系方程,得出该体系的最佳固化条件为170℃、7h.","authors":[{"authorName":"洪晓东","id":"a81760a0-6450-4a3b-817e-06cc9c28a5db","originalAuthorName":"洪晓东"},{"authorName":"王旭东","id":"4d731ee1-3d0f-4fe0-8c03-b1d34c7b24ae","originalAuthorName":"王旭东"},{"authorName":"王铀","id":"9be5911c-c516-48dc-b82a-45a235fddd7b","originalAuthorName":"王铀"},{"authorName":"梁伟","id":"57f6948f-8f0b-467c-a210-c3ac8e41ceb6","originalAuthorName":"梁伟"}],"doi":"","fpage":"64","id":"6a59c94c-9ab9-4e11-a27f-c66280e9a054","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3e96fa27-434b-413e-bebd-42be4faeaee8","keyword":"固化动力学","originalKeyword":"固化动力学"},{"id":"527e6146-2897-44e8-a0e7-bcef76066e43","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"51b4c928-1153-4500-a426-01cc98cf908d","keyword":"红外光谱","originalKeyword":"红外光谱"},{"id":"77be5060-495a-42eb-ab84-ec7de8e849c9","keyword":"转化率","originalKeyword":"转化率"}],"language":"zh","publisherId":"cldb201222017","title":"原位与FTIR法研究环氧树脂固化动力学","volume":"26","year":"2012"},{"abstractinfo":"采用“”增韧技术对双马来酰亚胺复合材料层压板进行了层间增韧,然后对增韧和未增韧的两种双马复合材料层压板进行准静态压入及冲击后压缩剩余强度试验研究,并用超声C扫描和热揭层对层压板的损伤进行测量.结果表明:经过“”增韧的双马复合材料层压板层间形成了热塑性树脂/热固性树脂双连续的结构,该结构不仅能抑制增韧层压板的内部损伤面积,改善损伤阻抗,使其表面凹坑深度更明显,而且还大幅提高了其损伤容限.","authors":[{"authorName":"马宏毅","id":"7012f589-fd83-4da2-8d13-a614c19d0d57","originalAuthorName":"马宏毅"},{"authorName":"安学锋","id":"2696b4ec-0cce-48b7-9734-5d85ff403094","originalAuthorName":"安学锋"},{"authorName":"益小苏","id":"7c3b4f4f-c18e-4264-acc7-4cb56c24ba55","originalAuthorName":"益小苏"}],"doi":"","fpage":"88","id":"5bdadd15-ec1b-4ce5-b105-01c018b1e283","issue":"9","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"57e8043e-4ec3-4fff-a152-d7fba73490e0","keyword":"复合材料层压板","originalKeyword":"复合材料层压板"},{"id":"69db841e-469a-4860-9d4b-85f3d3b20ca7","keyword":"层间增韧","originalKeyword":"层间增韧"},{"id":"98dc87e7-cab3-4812-9f5a-84f3a21e8393","keyword":"准静态压入","originalKeyword":"准静态压入"},{"id":"6e8dcdb9-9f15-44c5-ac18-1370ee5d362e","keyword":"损伤阻抗","originalKeyword":"损伤阻抗"},{"id":"1d929d7c-f352-49ce-944b-c344bff97a7e","keyword":"损伤容限","originalKeyword":"损伤容限"}],"language":"zh","publisherId":"clgc201209019","title":"“”增韧复合材料准静态压入损伤特性研究","volume":"","year":"2012"},{"abstractinfo":"环氧树脂5228A固化诱导5228A/PAEK共混体系相分离,随着PAEK含量增加,固化机理由成核-生长机理向旋节线分相转化,在微观相形貌上表现为海岛-双连续-相反转结构形式的转变,富PAEK热塑相在脆断作用载荷下的塑性变形以及部分富5228A热固微球结构的撕裂,预示着两相之间构建的良好界面;通过PAEK膜对CCF300/5228A复合材料“”增韧,重新构建了其特定的周期性微结构;动态热机械分析结果表明,“”增韧后复材的玻璃化转变温度略有降低,但基本不会影响原5228A基体树脂的应用温度范围;冲击试验结果表明,无论是损伤阻抗还是冲击后剩余压缩强度(CAI)均获得大幅度提高.","authors":[{"authorName":"刘立朋","id":"88e3cdbf-2ceb-4d4f-b5d7-42f0f3a93c4b","originalAuthorName":"刘立朋"},{"authorName":"张明","id":"58179e42-5a40-4c29-aa50-17f58dcd55df","originalAuthorName":"张明"},{"authorName":"安学锋","id":"1d866f6b-2bdc-4af0-85d0-df5b21ae3b17","originalAuthorName":"安学锋"},{"authorName":"周玉敬","id":"eb6f6f9f-7dcb-472c-b8d7-d6ba127b76ab","originalAuthorName":"周玉敬"},{"authorName":"唐邦路","id":"848393ae-b191-405f-ac28-100b2ca2a636","originalAuthorName":"唐邦路"},{"authorName":"益小苏","id":"02460606-0d56-4d0a-ae29-c8b9ed1fc3cc","originalAuthorName":"益小苏"}],"doi":"10.3969/j.issn.1001-4381.2010.z1.016","fpage":"77","id":"3a103e7a-cd74-447b-bfbe-feed657824f2","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"0f144cd7-172c-4b5a-9e3c-a2ee87d4517c","keyword":"成核-生长机理","originalKeyword":"成核-生长机理"},{"id":"e65b99aa-1563-4694-8d4e-4e5970719e1c","keyword":"旋节线分相","originalKeyword":"旋节线分相"},{"id":"84cbfa83-f36e-4ecd-a0f6-2e8cc43b7ae6","keyword":"“”增韧","originalKeyword":"“离位”增韧"},{"id":"c19dfc1e-e945-4f79-ac72-8490dfab5eee","keyword":"损伤阻抗","originalKeyword":"损伤阻抗"},{"id":"03bd4164-9c7c-4923-8a44-335abb805ec4","keyword":"冲击后剩余压缩强度","originalKeyword":"冲击后剩余压缩强度"}],"language":"zh","publisherId":"clgc2010z1016","title":"CCF300/5228A复合材料层合板“”增韧研究","volume":"","year":"2010"},{"abstractinfo":"针对氰酸酯采用环氧树脂进行改性研究,对该体系的流变性能与DMA进行分析,并对浇注体的力学性能进行了研究.以聚砜作为增韧剂,采用\"\"增韧技术,制备复合材料层压板,测试了复合材料的力学性能与冲击后压缩强度(CAI),对微观增韧机理进行了研究.结果表明,在40℃时,氰酸酯/环氧树脂体系有较长的工艺适用期,很好的工艺操作性.Tg为200℃时,浇注体的力学性能优良.采用热塑性树脂作为\"\"增韧层,体系出现了相反转结构,具有较好的增韧效果,复合材料的CAI值从180 MPa增加到260 MPa,对复合材料的力学性能没有影响.","authors":[{"authorName":"王浩","id":"7aabf4f9-1c88-42fb-a12c-dbac7c7d5031","originalAuthorName":"王浩"},{"authorName":"郑亚萍","id":"a98bd1e8-38cd-49e2-8c19-e70966ee55f6","originalAuthorName":"郑亚萍"},{"authorName":"张娇霞","id":"d78513b1-2e3b-465f-97e9-87a21f3c7174","originalAuthorName":"张娇霞"},{"authorName":"许亚洪","id":"a1ab5d92-bc52-4b28-bc84-4f37d57c02a7","originalAuthorName":"许亚洪"},{"authorName":"戴峰","id":"acbcec9b-0e61-4f8f-bec2-2d1494db9a4b","originalAuthorName":"戴峰"}],"doi":"10.3969/j.issn.1007-2330.2009.04.014","fpage":"58","id":"b47bebff-e1c0-4236-9ad1-bb56fb13240e","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"d181d3a9-edc5-4d11-bf06-0c9f5c886b18","keyword":"氰酸酯","originalKeyword":"氰酸酯"},{"id":"e36e66fc-abab-4fb1-905d-41d3b7704624","keyword":"\"\"增韧改性","originalKeyword":"\"离位\"增韧改性"},{"id":"49bb2d2b-d13f-48d2-a40c-e30d4aecef6d","keyword":"冲击后压缩强度","originalKeyword":"冲击后压缩强度"}],"language":"zh","publisherId":"yhclgy200904014","title":"T700/氰酸酯/环氧树脂复合材料的\"\"增韧","volume":"39","year":"2009"},{"abstractinfo":"为研究增韧对复合材料加筋板结构承载性能的影响,首先,分别对未增韧和增韧复合材料帽型长桁加筋板进行了三点弯曲试验,比较了2种加筋板的初始分层载荷、极限载荷以及试验现象;然后,利用ABAQUS建立了三维渐进失效模型,考虑长桁-蒙皮界面和复合材料层合板的失效,对界面的分层机制和蒙皮的失效过程进行了分析.结果表明:有限元结果与试验结果吻合较好,增韧仅能略微提高界面的初始分层载荷,但对极限载荷有较大提升;在分层起始阶段Ⅰ型拉伸模式占主要作用,随着分层不断扩展,Ⅱ型剪切模式占比持续增加,而剪切模式的高韧性正是增韧界面具有良好性能的重要原因.所得结论表明增韧界面有良好的抗剥离性能,且在剪切方向上的表现尤为突出.","authors":[{"authorName":"王伟","id":"68d93425-8d4c-46f2-9853-b216c85a2717","originalAuthorName":"王伟"},{"authorName":"陈普会","id":"9378cdf1-c0a7-49a5-bc64-bcd1a447120d","originalAuthorName":"陈普会"},{"authorName":"李念","id":"37b6f6a9-caef-4d14-b455-f06e2f52e845","originalAuthorName":"李念"}],"doi":"10.13801/j.cnki.fhclxb.20160307.002","fpage":"2500","id":"30b93e07-702a-45b0-a881-31e1a2fa2d1d","issue":"11","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"747773bd-9299-4eac-9c7c-7c39c6401b5e","keyword":"增韧","originalKeyword":"离位增韧"},{"id":"2911a250-29ac-48ae-b586-44ee2126525e","keyword":"加筋板","originalKeyword":"加筋板"},{"id":"84accd23-8b56-4caf-88df-50cbece96d56","keyword":"三点弯曲试验","originalKeyword":"三点弯曲试验"},{"id":"60400510-a091-464b-9630-28dae1e579bc","keyword":"粘接元","originalKeyword":"粘接元"},{"id":"6333978d-5740-482a-b606-99478c02a164","keyword":"虚拟裂纹闭合技术","originalKeyword":"虚拟裂纹闭合技术"}],"language":"zh","publisherId":"fhclxb201611013","title":"增韧复合材料加筋板三点弯曲试验研究与数值分析","volume":"33","year":"2016"},{"abstractinfo":"研究了\"\"增韧对RTM聚酰亚胺(PI-9731)树脂基复合材料力学性能的影响.结果表明:当增韧剂的质量分数为15%时,经粉末法和薄膜法\"\"增韧G827/PI-9731复合材料的室温层间剪切强度从增韧前的97.9 MPa分别提高到108 MPa和110 MPa.高温(288℃)层间剪切强度变化不大.G827/PI-9731复合材料经粉末法\"\"增韧后,Ⅰ型断裂能释放率从增韧前的310 J/m2提高到410 J/m2,Ⅱ型断裂能释放率从增韧前的590 J/m2提高到939 J/m2.而经过薄膜法\"\"增韧后,其复合材料的I型断裂能释放率提高到459 J/m2,Ⅱ型断裂能释放率提高到1100 J/m2.经电镜分析表明,由于热塑性聚酰亚胺的引入,在复合材料层间区域形成热固/热塑相反转结构,在裂纹扩展的过程中,包覆热塑性聚酰亚胺的PI-9731粒子发生明显取向和变形,从而提高韧性.","authors":[{"authorName":"刘志真","id":"d5ba0f19-25c4-404b-b2d7-91a09f90f995","originalAuthorName":"刘志真"},{"authorName":"郭恩玉","id":"360b9601-f156-46bd-bac0-5f3d60b04b4c","originalAuthorName":"郭恩玉"},{"authorName":"邢军","id":"8462826a-90a4-4dc7-8823-44784004667b","originalAuthorName":"邢军"},{"authorName":"李宏运","id":"3f4e9f04-d73f-48f6-94c7-84d698eafa04","originalAuthorName":"李宏运"},{"authorName":"益小苏","id":"4365b484-9ac0-4998-a21b-f0270e61350a","originalAuthorName":"益小苏"},{"authorName":"王震","id":"e9ddddda-ca39-47da-8b40-15034b9c4f30","originalAuthorName":"王震"},{"authorName":"于洋","id":"e7cc144c-2dd4-4d53-8381-b8c54e1b2e21","originalAuthorName":"于洋"}],"doi":"","fpage":"1","id":"9edce76b-9573-4ee6-bfe4-764673c7d790","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"c459a851-9c88-44c2-80a7-0ec21ef9edf5","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"a4dfa538-5d71-48a5-b109-12b4adb7d6ff","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1b7d4c74-eeee-4486-bab2-880d98e3e682","keyword":"RTM成形","originalKeyword":"RTM成形"},{"id":"89be9a2c-2671-4aff-b0d1-6152d4eab389","keyword":"\"\"增韧","originalKeyword":"\"离位\"增韧"},{"id":"840e98c7-57b7-414e-9c54-98b87bee49d8","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"fhclxb201006001","title":"\"\"增韧技术在碳纤维/RTM聚酰亚胺复合材料中的应用","volume":"27","year":"2010"}],"totalpage":701,"totalrecord":7001}