{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研制了新型储能器件超级电容电池用石墨和活性炭复合负极材料,应用恒流充放电法,考察了这种复合负极材料的电化学性能.结果表明这种碳复合负极材料兼具良好的电容特性和电池特性,在基本保持电池特性的同时,能将电容器电位窗口从2.5V提高至3.5V vs Li/Li+,能量密度从21.7Wh/kg提高至40.3wh/kg,增大近两倍;有很好的倍率性能,电流密度从0.1A/g增加到1A/g时,比容量仅下降了1.3F/g;同时能保持良好的循环性能,10次容量保持率即使在3.5V高压下仍有96.7%.","authors":[{"authorName":"李劫","id":"b0880fe6-d580-4a7d-b97c-3562673411bb","originalAuthorName":"李劫"},{"authorName":"杨娟","id":"3bc7b74a-6c22-40ff-95ef-aa78b6a931c8","originalAuthorName":"杨娟"},{"authorName":"郝新","id":"ec8df7da-b1a3-4fc7-bd05-453f1a47312a","originalAuthorName":"郝新"},{"authorName":"张治安","id":"5c4051df-e50c-44a1-8766-7a648878acf9","originalAuthorName":"张治安"},{"authorName":"赖延清","id":"acb2ee79-dd85-4b02-a22d-9b453281fdca","originalAuthorName":"赖延清"},{"authorName":"周向阳","id":"f6a960b5-4f6f-497a-8acb-a1fb4e32d57e","originalAuthorName":"周向阳"},{"authorName":"汤依伟","id":"f4eb3615-c125-46ca-ab41-f4ea8454aaae","originalAuthorName":"汤依伟"}],"doi":"","fpage":"621","id":"8302ed6f-ccb7-4473-9db9-dbc972df0f2a","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0b0a0e4f-e0d4-4607-bde9-4c6af187c8cc","keyword":"超级电容电池","originalKeyword":"超级电容电池"},{"id":"4d99a3e2-9ec9-4b06-8e24-ca0b04680f32","keyword":"石墨","originalKeyword":"石墨"},{"id":"0ed732b4-b64a-40a4-a373-887053993e38","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"ab590600-333e-4600-a1de-a4d6f379f29f","keyword":"复合负极","originalKeyword":"复合负极"}],"language":"zh","publisherId":"gncl200904028","title":"超级电容电池用碳类复合负极材料的研究","volume":"40","year":"2009"},{"abstractinfo":"超级电容电池是具有高能量密度和高功率密度的新型储能器件,对其负极材料的研究主要集中在炭材料上.分析了超级电容电池用炭类负极的工作原理,综述了可用作超级电容电池负极的活性炭/石墨复合材料和三维炭材料的制备方法与电化学性能,分析了现行超级电容电池用炭类材料研究中的不足,指出超级电容电池用炭类负极材料的研究重点应集中在对其储能机理进行深层次研究.采用量子化学计算方法研究炭材料结构与性能的关系也是未来研究的一个重点.","authors":[{"authorName":"周向阳","id":"714fe28d-dbba-4653-8e3c-d89c126190c2","originalAuthorName":"周向阳"},{"authorName":"娄世菊","id":"95cd2608-5a17-4c85-a93c-78addd5be121","originalAuthorName":"娄世菊"},{"authorName":"杨娟","id":"c8ebbfd6-1af7-40b8-842c-fc0cdc3822cb","originalAuthorName":"杨娟"},{"authorName":"刘宏专","id":"1d05fd07-c230-4140-ba2a-1d7e14ef5c90","originalAuthorName":"刘宏专"},{"authorName":"邹幽兰","id":"fe8d726c-d161-4e73-bd06-52d6d55822fb","originalAuthorName":"邹幽兰"}],"doi":"","fpage":"6","id":"0a3dbc26-576a-4b39-8aea-6846f033bd86","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"28b71109-7309-4e4d-9b1c-e1b58a6f4642","keyword":"超级电容电池","originalKeyword":"超级电容电池"},{"id":"54a7cec0-424c-4d8d-8a5f-4135c958fcf1","keyword":"炭类负极","originalKeyword":"炭类负极"},{"id":"30299073-65ba-4c59-ba6f-7c1eaec6389e","keyword":"储能器件","originalKeyword":"储能器件"}],"language":"zh","publisherId":"cldb201013002","title":"超级电容电池用炭类负极材料的研究进展","volume":"24","year":"2010"},{"abstractinfo":"以中间相炭微球( CMS)为核心材料,沥青为壳层材料前躯体,采用原位生成法制备了中间相炭微球/活性炭(AC)复合材料.将所制CMS/AC复合材料作为超级电容电池的负极材料,组装了模拟电容器和锂离子半电池.采用扫描电镜和X-射线衍射仪分析了材料的物理结构,并研究了CMS/AC复合材料的电化学行为进行研究.结果表明:CMS/AC复合负极材料在六氟磷锂/碳酸乙烯酯+碳酸二甲酯(LiPF6/EC+DMC)与四氟硼酸四乙基铵/乙腈( Et4 NBF4/AN)电解液中均表现出良好的电化学性能,其比电容在模拟电容器中达到25.8 F/g,在锂离子半电池中能达到306.6 mAh/g (0.2C);同时表现出良好的倍率性能和循环性能.","authors":[{"authorName":"杨娟","id":"f963a058-15b6-412a-bc19-5eb72e4f45b9","originalAuthorName":"杨娟"},{"authorName":"周向阳","id":"bf24d00a-5a5e-4464-9634-caa1df75c919","originalAuthorName":"周向阳"},{"authorName":"娄世菊","id":"ed586b3c-8389-4eb7-b756-23f32f63ce01","originalAuthorName":"娄世菊"}],"doi":"","fpage":"453","id":"21942d24-e925-4d13-b314-e09485bfb8f7","issue":"6","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"895524ea-08cb-401c-ba7f-d03a19d0868c","keyword":"超级电容电池","originalKeyword":"超级电容电池"},{"id":"2907d9f9-4ec9-4319-b44a-de48ed872a84","keyword":"中间相炭微球","originalKeyword":"中间相炭微球"},{"id":"060b26c2-1502-4982-ad4f-9ff419983b2a","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"985e0ea8-173f-4c9d-8e60-5c92178af7cf","keyword":"复合电极","originalKeyword":"复合电极"}],"language":"zh","publisherId":"xxtcl201106009","title":"中间相炭微球/活性炭复合材料的电化学行为","volume":"26","year":"2011"},{"abstractinfo":"超级电容器是近年来发展起来的一种新型的储能装置,具有功率密度高、寿命长、使用温度宽及充电迅速等优异特性,对其的研究及应用也日益活跃.本文介绍了超级电容器的原理和分类,以及近年来超级电容器的发展和商业化进程.同时,也介绍了超级电容器的应用情况. 随着电动车研究的兴起,超级电容器重要的研究方向之一是将其与高比能量的蓄电池连用,在车辆加速、刹车或爬坡的时候提供车辆所需的高功率,达到减少蓄电池的体积和延长蓄电池寿命的目的.纳米碳材料的出现和发展为超级电容器电极材料研究提供了新的发展方向,将给超级电容器性能提高提供广阔的发展思路和空间.","authors":[{"authorName":"朱磊","id":"e51c2ad4-92cc-44ab-92be-cc0722700a96","originalAuthorName":"朱磊"},{"authorName":"吴伯荣","id":"d255bb7d-ee6b-46ee-aaf8-fd4f64327b22","originalAuthorName":"吴伯荣"},{"authorName":"陈晖","id":"7c317478-62a7-4897-aeb4-cbff5ccf1e71","originalAuthorName":"陈晖"},{"authorName":"刘明义","id":"0589a768-2b35-45c5-94d0-b5bbf0126933","originalAuthorName":"刘明义"},{"authorName":"简旭宇","id":"3dceaa6c-87e3-4e88-a809-9a00f94fd33a","originalAuthorName":"简旭宇"},{"authorName":"李志强","id":"3e304674-b7e1-4008-a603-eded9cfaf493","originalAuthorName":"李志强"}],"doi":"10.3969/j.issn.0258-7076.2003.03.017","fpage":"385","id":"09e1c934-d4ff-4256-98c1-bb43bd4fb1bc","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"95595ada-4060-4db0-b291-fccfbc78c4d2","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"f45fbbad-fea0-46bb-9794-5cb7366a7d32","keyword":"电化学电容器","originalKeyword":"电化学电容器"},{"id":"5febe762-e2f5-47db-acf3-689129de238f","keyword":"电动车","originalKeyword":"电动车"},{"id":"8a223f29-07a5-4504-8436-749eea545fb7","keyword":"高比功率","originalKeyword":"高比功率"}],"language":"zh","publisherId":"xyjs200303017","title":"超级电容器研究及其应用","volume":"27","year":"2003"},{"abstractinfo":"传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。初步介绍了新型锂离子电容器。锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。","authors":[{"authorName":"梁晰童","id":"834702de-5c0d-4782-adcf-70c2b2ca1081","originalAuthorName":"梁晰童"},{"authorName":"潘伟","id":"38ed93c4-a60b-4830-ae2a-6543b3c633a8","originalAuthorName":"潘伟"},{"authorName":"陈昆峰","id":"d1551088-f856-4a3f-b3e3-ce41e9f8eefb","originalAuthorName":"陈昆峰"},{"authorName":"薛冬峰","id":"5e01a889-aa53-4399-928e-23b2abae18c8","originalAuthorName":"薛冬峰"}],"categoryName":"综合评述","doi":"10.11944/j.issn.1000-0518.2016.08.160174","fpage":"867","id":"a8bf944d-fd3a-4c60-a7db-b6cc877c31eb","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"3bce0713-ca24-4f31-9e85-cc76971b9e24","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"5b0a0934-4ff3-4016-bcbc-c4315bd1d41b","keyword":"胶体离子电极材料","originalKeyword":"胶体离子电极材料"},{"id":"27fc7adb-6edb-4aa0-ace2-b2a498819a05","keyword":"氧化还原电解质","originalKeyword":"氧化还原电解质"},{"id":"afff3660-f691-46e9-87f7-3d1462e9de6c","keyword":"电池电容器","originalKeyword":"电池电容器"}],"language":"zh","publisherId":"yyhx-33-8-867","title":"新型超级电容器的研发进展","volume":"33","year":"2016"},{"abstractinfo":"传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究.本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述.原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量.氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度.初步介绍了新型锂离子电容器.锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度.依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度.","authors":[{"authorName":"梁晰童","id":"2750c646-a256-4579-bdd9-af63a454c550","originalAuthorName":"梁晰童"},{"authorName":"潘伟","id":"49794a46-242c-4252-b4b2-44cbc9535e4c","originalAuthorName":"潘伟"},{"authorName":"陈昆峰","id":"f7fa3184-a61b-4530-b59f-13b2817cc329","originalAuthorName":"陈昆峰"},{"authorName":"薛冬峰","id":"3b497502-0eeb-471b-99c5-ab9388561894","originalAuthorName":"薛冬峰"}],"doi":"10.11944/j.issn.1000-0518.2016.08.160174","fpage":"867","id":"b0103ae2-6354-483a-8c0f-3476d124858b","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"fd57126b-12ea-4bc4-9eb4-b3dc1bfad567","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"09eb8282-6731-4cdd-8562-d27ddcc4ab0e","keyword":"胶体离子电极材料","originalKeyword":"胶体离子电极材料"},{"id":"3e52493f-3222-4366-bea9-3c887063ec20","keyword":"氧化还原电解质","originalKeyword":"氧化还原电解质"},{"id":"4ad26c61-2a33-4970-8c56-6b11ab3ad7c5","keyword":"电池电容器","originalKeyword":"电池电容器"}],"language":"zh","publisherId":"yyhx201608002","title":"新型超级电容器的研发进展","volume":"33","year":"2016"},{"abstractinfo":"超级电容器作为储能器件,与传统物理电容器相比较明显地提高了比容量和比能量,而与二次电池相比,虽然比能量低,但其比功率却有着数量级的增加.本文综述了用于制备超级电容器的三类电极材料:碳材料、金属氧化物材料和导电聚合物材料的研究进展.","authors":[{"authorName":"周建新","id":"e418bdda-e785-4ee9-9f91-8c689c8bb321","originalAuthorName":"周建新"},{"authorName":"沈湘黔","id":"beea725b-943f-4e82-9f5e-b248a45371c4","originalAuthorName":"沈湘黔"}],"doi":"","fpage":"1020","id":"c0cfac2d-7272-4ac7-9233-772e06dcd5d9","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"02442ea1-5990-4c4f-a6ca-2d02a70e2cfd","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"ddce754c-fee8-4cf1-b515-3acfa9a529af","keyword":"电极材料","originalKeyword":"电极材料"},{"id":"047bba39-62fe-48fe-aa86-af49a2bf51a7","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"gncl2004z1284","title":"超级电容器电极材料研究进展","volume":"35","year":"2004"},{"abstractinfo":"超级电容器作为一种新型储能装置,与蓄电池相比具有较高的比功率,与传统电容器相比具有较高的比能量、容量大、运行温度范围宽,循环寿命长,引起了人们的广泛关注.本文综述了超级电容器的储能原理、特点、应用范围等,并详细介绍了用金属氧化物及水合物做电极材料的超级电容器的最新研究进展.","authors":[{"authorName":"朱修锋","id":"f2f73312-39e3-443b-8531-72ab65ac08e5","originalAuthorName":"朱修锋"},{"authorName":"景晓燕","id":"ed44d780-8a26-43bc-ac56-c9aa204021c5","originalAuthorName":"景晓燕"},{"authorName":"张密林","id":"a46268f0-bc5e-4ad7-8410-5820ac1cc861","originalAuthorName":"张密林"}],"doi":"10.3969/j.issn.1007-4252.2002.03.024","fpage":"325","id":"7956fcfa-992a-4410-a347-1f9dfddfb817","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"273d9554-26ac-4b03-8c10-b9336db1b510","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"b84cebbc-85d9-49fb-8269-b7e09e31ae43","keyword":"电化学电容器","originalKeyword":"电化学电容器"},{"id":"d82924f1-704c-4547-875a-3ed02d568f51","keyword":"金属氧化物","originalKeyword":"金属氧化物"},{"id":"bcbc7de6-85f2-4fd7-95c0-9044312f393a","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"gnclyqjxb200203024","title":"金属氧化物超级电容器及其应用研究进展","volume":"8","year":"2002"},{"abstractinfo":"简述了用不同电极材料的超级电容器的工作原理,并在此基础上,着重介绍了国内外在超级电容器电极材料上的研究进展.","authors":[{"authorName":"肖超","id":"ffaed822-08b5-426b-9e8c-27ea1527c61a","originalAuthorName":"肖超"},{"authorName":"唐斌","id":"254ec409-58fe-44fc-bc28-830cedbe49be","originalAuthorName":"唐斌"},{"authorName":"吴孟强","id":"7907d2f6-fd0f-4f44-b0b8-eef8f59ac0c1","originalAuthorName":"吴孟强"},{"authorName":"张树人","id":"c95e891e-f057-4e36-be97-f4bcf88ff5b4","originalAuthorName":"张树人"}],"doi":"10.3969/j.issn.1009-9239.2007.01.014","fpage":"44","id":"8ef625e6-0d15-4eb6-8729-2646306f8374","issue":"1","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"66c61f4b-805c-489a-be69-4b48a7651772","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"d1fd56d0-e0a7-4811-be7b-291c176ff725","keyword":"电极材料","originalKeyword":"电极材料"},{"id":"63020632-0787-4f87-8015-c36ea76c71be","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"jycltx200701014","title":"超级电容器电极材料的研究进展","volume":"40","year":"2007"},{"abstractinfo":"超级电容器作为一种新型储能元件,具有比传统电容器高得多的能量密度和比电池大得多的功率密度以及超长的使用寿命等特点.碳纳米管由于具有良好的导电性和高比表面积而成为超级电容器的理想电极材料.综述了用作超级电容器电极材料的碳纳米管及其复合材料的结构、特性、电化学性能和基于该材料的超级电容器研究的新成果.","authors":[{"authorName":"邓梅根","id":"ff11757c-63d7-409e-9e8c-378e7070aec0","originalAuthorName":"邓梅根"},{"authorName":"卢云","id":"8e6efcf7-fe0d-4c47-a841-3f0fb27f432d","originalAuthorName":"卢云"},{"authorName":"张治安","id":"d2be8ef7-142a-43f2-88e3-5a10300e5851","originalAuthorName":"张治安"},{"authorName":"胡永达","id":"57d5327d-e049-4ad7-a2da-6b7a3d9c2bb3","originalAuthorName":"胡永达"},{"authorName":"杨邦朝","id":"82fdcf5a-ea2f-44c3-9370-95d46b23b18c","originalAuthorName":"杨邦朝"}],"doi":"","fpage":"89","id":"0f9a97d3-b329-446a-8858-c8901482e85e","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d79f4d16-0c5f-49eb-8a61-a048d5759721","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"5f9af578-0b93-4207-8a09-c2ee9df73957","keyword":"碳纳米管复合电极材料","originalKeyword":"碳纳米管复合电极材料"},{"id":"74600862-519b-4032-ae77-d4d1920c7e00","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"cldb2004z1030","title":"超级电容器碳纳米管及其复合电极材料最新研究进展","volume":"18","year":"2004"}],"totalpage":646,"totalrecord":6456}