{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用溶胶-凝胶法制备了ZnO量子点,并采用有机高分子试剂PEG(聚乙二醇,Mw=2000)对其表面进行修饰.借助X射线衍射分析、傅立叶红外光谱、光致发光谱和透射显微镜等测试方法,研究了PEG表面修饰对ZnO量子点结构和光学性能的影响规律.研究表明,混合加入的PEG聚合物能够成功地包覆在ZnO量子点表面,但没有改变量子点的晶体结构,经PEG表面修饰后的ZnO量子点尺寸变小,稳定性增强,分散更均匀.同时经PEG修饰的ZnO量子点在400~500 nm波长区域缺陷态发射峰明显减弱,表明采用PEG来改善ZnO量子点表面缺陷结构具有良好效果.","authors":[{"authorName":"檀满林","id":"cf102dac-e6f7-48c8-b62a-443fec1d8337","originalAuthorName":"檀满林"},{"authorName":"王彦涛","id":"4a8e02c3-26cb-46f9-bec0-2bc5320fcd81","originalAuthorName":"王彦涛"},{"authorName":"张维丽","id":"2d7c8d1b-08b8-4a76-a2ab-80f09aa3e897","originalAuthorName":"张维丽"},{"authorName":"符冬菊","id":"051bbdbb-5fab-498e-8cc8-e11f7f4e4674","originalAuthorName":"符冬菊"},{"authorName":"李冬霜","id":"df6d7c7e-4cfb-405f-81e3-42f2451858a9","originalAuthorName":"李冬霜"},{"authorName":"王晓伟","id":"f7835847-985e-41fd-b086-f84833e3af94","originalAuthorName":"王晓伟"},{"authorName":"马清","id":"0222df7a-0945-4211-b88f-f5ab8fda6f22","originalAuthorName":"马清"},{"authorName":"陈建军","id":"439a0150-45f7-472c-a145-49136df41ba6","originalAuthorName":"陈建军"},{"authorName":"李廷凯","id":"762e5cd0-ff2d-4423-97ce-f51b3cb07bf5","originalAuthorName":"李廷凯"}],"doi":"10.15541/jim20140080","fpage":"1039","id":"9adc1638-b90f-411b-914c-e9e15054c8f9","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f0254480-a684-4751-b298-c2e97617de8f","keyword":"ZnO量子点","originalKeyword":"ZnO量子点"},{"id":"fedaf2ce-545b-423a-96ce-7b07405b05f5","keyword":"PEG","originalKeyword":"PEG"},{"id":"84ab1c21-32d5-4450-a9bc-8601f1ac04f0","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"47f118c9-e693-4914-8608-ff5edbb8e82b","keyword":"发光性能","originalKeyword":"发光性能"}],"language":"zh","publisherId":"wjclxb201410006","title":"基于PEG修饰的ZnO量子点光学特性研究","volume":"29","year":"2014"},{"abstractinfo":"采用辐射法合成了一系列具有合适相变温度和快速响应性能的PNIPA/PEG多孔智能水凝胶,用红外光谱分析了水凝胶的结构,并测定了水凝胶的溶胀动力学、平衡溶胀率和退溶胀动力学,研究了辐射剂量和成孔剂分子量对凝胶性能的影响.结果表明,PEG分子仅在聚合交联过程中充当成孔剂,不参与反应,反应后被除去;PNIPA/PEG水凝胶的平衡溶胀率(SR)随辐射剂量的升高而减小,其最低临界相转变温度(LCST)在37℃左右,且基本不受辐射剂量的影响;溶胀性能随着PEG分子量的增大而提高.","authors":[{"authorName":"李智慧","id":"e1f5b422-6101-47b5-a759-8ec19e8d6a83","originalAuthorName":"李智慧"},{"authorName":"刘文涛","id":"2f3bafe2-de1e-4e61-8a39-ba4f54f5be39","originalAuthorName":"刘文涛"},{"authorName":"李中原","id":"c4cb003d-d7f1-4887-b548-1ae3e35a5fa0","originalAuthorName":"李中原"},{"authorName":"张鸿儒","id":"9affec23-d8ff-4e69-a06d-c53069ef23c1","originalAuthorName":"张鸿儒"},{"authorName":"杨明成","id":"e43c63d8-03d4-45f2-90ce-3336c3fa4895","originalAuthorName":"杨明成"},{"authorName":"何素芹","id":"77fa66e6-4f9c-4191-b037-4552dea17240","originalAuthorName":"何素芹"},{"authorName":"朱诚身","id":"a0bc22ec-4f91-4a3b-b7a3-9fc63077f09e","originalAuthorName":"朱诚身"}],"doi":"","fpage":"2047","id":"013c2d6f-4730-452d-b559-22abfd99f0ca","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"65cc8708-0786-4d0d-9d97-cb0b7972818c","keyword":"PNIPA","originalKeyword":"PNIPA"},{"id":"17adcae9-d379-4620-9d0a-2b8fb7c3b87f","keyword":"PEG","originalKeyword":"PEG"},{"id":"e73da9c9-2400-440f-9aae-0444dcfcf747","keyword":"温度敏感","originalKeyword":"温度敏感"},{"id":"cde66fe2-4b61-4311-b43a-8799ed86fe79","keyword":"辐射","originalKeyword":"辐射"}],"language":"zh","publisherId":"gncl200912030","title":"PNIPA/PEG多孔智能水凝胶的辐射合成与性能研究","volume":"40","year":"2009"},{"abstractinfo":"通过密封加热熔融的方式制备了添加CNT的活性炭/硫锂离子电池正极活性材料,并对其进行PEG包覆复合改性,制备了C-CNT/S(PEG)正极复合材料.X射线衍射(XRD)图谱显示复合材料具有较强的非晶结构,且单质硫分散在碳材料的微孔之中.扫描电镜(SEM)显示CNT均匀分散在复合材料之中,并形成了三维导电结构.放电比容量测试显示CNT的加入提高了复合材料的放电比容量;PEG包覆的复合改性材料首次放电比容量高达1371.1 mAh/g,循环50次后放电比容量为662.8 mAh/g.说明添加CNT及PEG包覆复合改性,使活性炭/硫正极材料的电化学性能显著提高.","authors":[{"authorName":"赵航","id":"bbd2ca8f-d77f-435f-8cf0-bbe0282dd435","originalAuthorName":"赵航"},{"authorName":"肖剑荣","id":"011336ee-bd3f-464a-9708-6149f54f3e9c","originalAuthorName":"肖剑荣"},{"authorName":"蒋皓宇","id":"c0fb0c88-bf44-46c6-8918-07da14b885a0","originalAuthorName":"蒋皓宇"},{"authorName":"王宏哲","id":"a4f9af91-9378-4569-a2ac-2e8d96ee2ecb","originalAuthorName":"王宏哲"},{"authorName":"李延伟","id":"ae708aab-4fc4-4a93-b9e1-30de8f5a44c7","originalAuthorName":"李延伟"}],"doi":"","fpage":"928","id":"8b4a004c-fde9-4391-b5b6-d72ff6be96b1","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"08787690-b65a-4031-a019-7ba204c8c3d9","keyword":"CNT","originalKeyword":"CNT"},{"id":"34c6f44a-643d-42cd-8e4d-438769573572","keyword":"包覆","originalKeyword":"包覆"},{"id":"ddd670e5-5a76-4ae7-a046-07a13bd237aa","keyword":"PEG","originalKeyword":"PEG"},{"id":"e71fd823-c312-43ff-a53a-b5e3d4088601","keyword":"锂硫电池","originalKeyword":"锂硫电池"},{"id":"244bb3b1-fdff-4740-b358-482db1c289b5","keyword":"正极材料","originalKeyword":"正极材料"}],"language":"zh","publisherId":"xyjsclygc201604021","title":"活性炭-CNT/PEG/硫复合材料的制备与储锂性能研究","volume":"45","year":"2016"},{"abstractinfo":"在PVDF/SiO_2体系中添加了PEG,利用浸没沉淀相转化法制备了PVDF/SiO_2杂化膜,并对膜性能进行测试,采用SEM观察膜表面与断面的微孔结构.结果表明:铸膜液中加入PEG,促进了SiO_2在PVDF体系中的分散,增加了界面微孔数量,该膜试样在保持较高截留率的情形下,水通量得到了一定程度的提高.SEM断面照片显示,在PVDF/SiO_2体系中加入PEG,制备的PVDF/SiO_2杂化膜试样中大孔的数量增多,而且孔壁上细小微孔数量也增多.","authors":[{"authorName":"沈惠玲","id":"3911f96c-8f3d-4384-b1ed-94a12169cae9","originalAuthorName":"沈惠玲"},{"authorName":"廖桦","id":"948981ec-ad1e-4516-855a-5069636796a1","originalAuthorName":"廖桦"},{"authorName":"肖长发","id":"7b0d1f57-aca3-49bf-b35e-317e35eeabd8","originalAuthorName":"肖长发"}],"doi":"10.3969/j.issn.1007-8924.2010.01.013","fpage":"65","id":"bb5f6d7f-36ac-41a4-9232-0004d5cfebc2","issue":"1","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"b2984209-38d6-4458-b5d6-ec3d7b8cd01c","keyword":"PVDF","originalKeyword":"PVDF"},{"id":"ec490e05-2d0d-471e-8de0-250011cc4566","keyword":"SiO_2","originalKeyword":"SiO_2"},{"id":"6bb2c15c-ab0d-44a5-b598-840dc0927156","keyword":"PEG","originalKeyword":"PEG"},{"id":"8e5e3add-74de-4bbb-8460-db47e2b2efaa","keyword":"杂化膜","originalKeyword":"杂化膜"}],"language":"zh","publisherId":"mkxyjs201001013","title":"添加剂PEG对PVDF/SiO_2杂化膜性能的影响","volume":"30","year":"2010"},{"abstractinfo":"以木薯淀粉(CSt)和丙烯酰胺(Am)、丙烯酸(AA)为主要原料,硝酸铈铵与过硫酸铵为复合引发剂(CAN--S2O28-),N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,聚乙二醇6000(PEG 6000)为成孔剂,采用水溶液聚合法制备了淀粉接枝聚丙烯酰胺丙烯酸复合PEG(PEG/CSt-g-PAAm)水凝胶材料.研究了PEG对水凝胶溶胀行为的影响,以及PEG/CSt-g-PAAm与CSt-g-PAAm两种凝胶在不同温度下的溶胀行为.实验结果表明,PEG6000的加入对凝胶材料的重复使用性能有显著改善作用,并可显著增加凝胶的溶胀速率及溶胀能力,温度可以影响PEG/CSt-g-PAAm凝胶的溶胀速率.","authors":[{"authorName":"张玺","id":"fc46d030-4868-4726-a73a-c0342c6d4e1b","originalAuthorName":"张玺"},{"authorName":"范力仁","id":"4a46848a-4ef7-4162-8601-b0ed1ee2c66d","originalAuthorName":"范力仁"},{"authorName":"罗文君","id":"c5d92408-4e6d-484a-8232-e5cf3c537bf4","originalAuthorName":"罗文君"},{"authorName":"曾鸣","id":"2ea1fbd1-e0a1-4853-a127-0fd7ffdf57be","originalAuthorName":"曾鸣"},{"authorName":"郑梯和","id":"9f3b7c32-739a-45db-9e84-738aa6d4baf4","originalAuthorName":"郑梯和"}],"doi":"","fpage":"693","id":"940a8bc3-db9f-47cf-b12a-59b38e1134c8","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2a703dde-951a-4c02-a835-e73109ae2062","keyword":"水凝胶","originalKeyword":"水凝胶"},{"id":"65e9bf4e-04ae-4516-b2af-cff8c9d3be65","keyword":"木薯淀粉","originalKeyword":"木薯淀粉"},{"id":"8e8f2298-eaaf-4b64-80bc-586190298c46","keyword":"PEG","originalKeyword":"PEG"},{"id":"5740802c-0cec-431e-bb61-e0b91e2aa4aa","keyword":"接枝共聚","originalKeyword":"接枝共聚"},{"id":"3c2e8907-d9e5-4d8d-a40f-e87b7d623b05","keyword":"溶胀","originalKeyword":"溶胀"}],"language":"zh","publisherId":"gncl200904048","title":"PEG/木薯淀粉接枝丙烯酰胺丙烯酸三元共聚物溶胀性能研究","volume":"40","year":"2009"},{"abstractinfo":"以正硅酸乙酯(TEOS)和钛酸四丁酯(TBT)为无机前驱体,采用溶胶-凝胶法制备了PEG/SiO2-TiO2杂化溶胶,通过提拉法制得杂化纤维,并对其进行了简单表征.结果表明,随钛硅物质的量比的增加或有机相质量的增加,溶胶的可纺性变好;有机相与无机相之间通过化学键连接;纤维直径为40μm左右;TiO2的引入增强了其抗紫外性,杂化纤维的耐热性优于纯PEG.","authors":[{"authorName":"马海红","id":"52993544-6d8c-45ea-8b60-01d7fdf3cafd","originalAuthorName":"马海红"},{"authorName":"周浩","id":"334f7989-2095-494d-baea-ffb9c90d2227","originalAuthorName":"周浩"},{"authorName":"贺力","id":"8f2b50d7-7dc7-41d8-b119-3bedc4234637","originalAuthorName":"贺力"},{"authorName":"于维","id":"5f623673-227e-4704-be8f-a71c2f127673","originalAuthorName":"于维"},{"authorName":"刘发国","id":"e946e3f5-3b7d-4594-afb8-df038187f0dc","originalAuthorName":"刘发国"},{"authorName":"陶俊","id":"fca76196-dc0f-4f39-91d4-d66dab2906d6","originalAuthorName":"陶俊"}],"doi":"","fpage":"102","id":"4ca5bfe4-78ab-4c34-a9ec-c82906f457e4","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"23068035-d872-4218-8fb1-c2ae742cbd63","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"234ce870-1dc6-42fe-bce3-2efea17592e3","keyword":"有机-无机杂化","originalKeyword":"有机-无机杂化"},{"id":"424d42e7-8fdf-4a59-bd65-462777b81521","keyword":"PEG","originalKeyword":"PEG"},{"id":"b22743e1-99cb-4331-beb4-cf0559225b0f","keyword":"SiO2-TiO2","originalKeyword":"SiO2-TiO2"},{"id":"0c08883c-d950-478e-a4f1-6c3b33a0dca5","keyword":"杂化纤维","originalKeyword":"杂化纤维"}],"language":"zh","publisherId":"cldb201022028","title":"PEG/SiO2-TiO2杂化纤维的制备与表征","volume":"24","year":"2010"},{"abstractinfo":"本文首次采用PEG固相还原Fe2O3成功地制备了LiFePO4锂电池用正极材料.通过XRD、SEM表征了材料的相态和形貌,采用恒电流充放电法研究了材料的电化学性能.SEM图上可观测到材料呈现出微米球形团簇结构和蜂窝状的表面;XRD结果表明,晶相为橄榄石型磷酸铁锂.对电池的电化学测试表明,制备的LiFePO4材料表现出优良倍率性能和循环稳定性.在0.1 C和0.3 C下,放电比容量分别为139.9 mAh/g和127.5 mAh/g,30次循环后比容量没有衰减.这种以廉价铁盐Fe2O3的PEG固相还原制备,为锂电池正极材料LiFePO4低成本制备提供了新的方法.","authors":[{"authorName":"李学良","id":"64efada8-7fe3-4b7b-9361-0386f2cd4bd6","originalAuthorName":"李学良"},{"authorName":"孟尧","id":"08c312a6-8279-4213-a740-bfbec63b6593","originalAuthorName":"孟尧"}],"doi":"","fpage":"31","id":"585b4496-fb5f-4feb-9835-9b228db81b45","issue":"1","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"727d57ff-1c00-428e-84c1-8b14a22dd7eb","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"a2810f95-d2f1-4c65-8c21-a525ae2795c4","keyword":"LiFePO4","originalKeyword":"LiFePO4"},{"id":"838700ad-1ece-499a-b315-b2a548a3e040","keyword":"PEG","originalKeyword":"PEG"},{"id":"0e5a5850-9e13-44d9-bdfa-d0578ae1b8a0","keyword":"Fe2O3","originalKeyword":"Fe2O3"}],"language":"zh","publisherId":"jsgncl201001008","title":"PEG固相还原制备LiFePO4及材料的电池性能","volume":"17","year":"2010"},{"abstractinfo":"利用水溶性高聚物PEG作为制备In(OH)3晶体生长的介质,制备了不同形貌和尺寸的 In(OH)3晶体。随着PEG浓度的增加,粒径呈现减小的趋势,且形貌上由不均一的片状渐变形成均一片状。利用SEM、TEM、XRD和傅立叶红外光谱分别对形貌、尺寸、结构和物相等进行了表征和分析。实验结果表明,在600℃条件下焙烧 In(OH)3晶体可以得到轴向尺寸约为30~50 nm 的短片状纳米 In2 O3,其粒子的尺寸较为均一、分散性较好且具有高的纯度。","authors":[{"authorName":"陈丽萍","id":"5a3ac515-ee8d-4180-a945-a7a7f8010a86","originalAuthorName":"陈丽萍"}],"doi":"10.3969/j.issn.1001-9731.2013.24.017","fpage":"3598","id":"ac0f2415-4ac9-4409-ae45-8f820919a570","issue":"24","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"59db9281-0436-4601-999b-d6f17dfdcc97","keyword":"PEG","originalKeyword":"PEG"},{"id":"33d7e533-8355-4108-970e-38656f122b6a","keyword":"In(OH)3","originalKeyword":"In(OH)3"},{"id":"f6e80e50-9706-4643-b520-3f6710947950","keyword":"纳米片","originalKeyword":"纳米片"},{"id":"5da2c8ee-1108-4cd7-9d8c-3cd4c31faad2","keyword":"In2 O3","originalKeyword":"In2 O3"}],"language":"zh","publisherId":"gncl201324017","title":"高聚物PEG导向制备的In(OH)3和In2 O3纳米材料及其表征","volume":"","year":"2013"},{"abstractinfo":"采用自制的相平衡研究装置,测定了Rb2CO3-PEG-H2O三元体系在25,35,45℃3个温度及 PEG1000,4000,10000 3个分子量下的等温平衡溶解度.用四参数方程w1=a+bw20.5+cw2+dw22对体系的双液线进行了拟合,拟合结果较好.结果表明该体系的双液相区,随着体系温度的升高和聚乙二醇分子量的增加而增大.用Othmer-Tobias方程和Bancroft方程对体系结线的实验数据进行了关联,并给出了方程的参数,所有线性相关系数(R)均大于0.99;并用NRTL模型对其进行了拟合.论文给出的Rb2CO3-PEG-H2O三元体系的相平衡数据,不仅为溶液化学提供了基础热力学数据,而且为碳酸铷的分离纯化及生物物质的萃取提供了新的方法和依据.","authors":[{"authorName":"胡满成","id":"ea648bd5-97f5-41cf-ae53-6b74de661633","originalAuthorName":"胡满成"},{"authorName":"张晓蕾","id":"d38d4756-2c64-41df-8a57-13e3649463a5","originalAuthorName":"张晓蕾"},{"authorName":"李淑妮","id":"24ba9b23-b0c2-4c8d-aa4f-6115d600eb3f","originalAuthorName":"李淑妮"},{"authorName":"蒋育澄","id":"c055c950-5648-4c58-9910-e21331731475","originalAuthorName":"蒋育澄"}],"doi":"10.3969/j.issn.0258-7076.2006.06.025","fpage":"837","id":"6dd1e1ef-7a28-45e0-9916-abc731db8bdb","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"eea34a4d-f8ba-45a1-87d0-1b612026c2f7","keyword":"Rb2CO3","originalKeyword":"Rb2CO3"},{"id":"1610258a-5d61-46d6-9590-26c531d956fd","keyword":"PEG","originalKeyword":"PEG"},{"id":"69127d35-acd8-4434-8bc9-60c349df2276","keyword":"三元体系","originalKeyword":"三元体系"},{"id":"a019c670-2701-42a6-90ab-9f693e2cc288","keyword":"相平衡","originalKeyword":"相平衡"}],"language":"zh","publisherId":"xyjs200606025","title":"PEG-Rb2CO3-H2O三元体系的相平衡研究","volume":"30","year":"2006"},{"abstractinfo":"以稀土醋酸盐为原料,聚乙二醇(PEG-1000)为溶剂和表面修饰剂,采用水热法一步合成了PEG修饰的NaGdF4:Yb3+/Er3+纳米粒子.以聚合度较小的TEG替换PEG-1000制备了TEG修饰的NaGdF4∶Yb3+/Er3+纳米粒子,研究了不同分子量对合成纳米粒子的影响作用.采用X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)、纳米粒度与Zeta电位分析仪、傅里叶变换红外光谱仪(FT-IR)、荧光分光光度计对合成样品进行了表征测试.结果表明,PEG修饰的短棒状纳米粒子为稳定的六方相β-NaGdF4结构,平均粒径40.5 nm,具有良好的亲水性、分散性和更强的发光性能,比TEG修饰的样品具有更好的结晶性、单分散性和更高的上转换荧光效率.","authors":[{"authorName":"宣琎楠","id":"2961b799-7612-4e3f-8843-7ada94a8f645","originalAuthorName":"宣琎楠"},{"authorName":"李娜","id":"3810fc7e-aab0-4b12-a3f1-556ca301640b","originalAuthorName":"李娜"},{"authorName":"王茗","id":"f26fb309-3170-42df-a820-74cdd84f4131","originalAuthorName":"王茗"},{"authorName":"曹雪丽","id":"8fd26408-3fc6-410b-bb0d-09ac1fe9c9c2","originalAuthorName":"曹雪丽"}],"doi":"","fpage":"2245","id":"b99e4b26-2bff-4071-b2dc-996b69d4a134","issue":"8","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"69bcb0e9-4a1c-4d5a-8e08-275ff54e5536","keyword":"NaGdF4∶Yb3+/Er3+","originalKeyword":"NaGdF4∶Yb3+/Er3+"},{"id":"6f18c1a0-40e3-4888-9c72-e56c5baeaef4","keyword":"上转换发光材料","originalKeyword":"上转换发光材料"},{"id":"3aa3ace1-be3a-4566-9f1a-189131673453","keyword":"水热法","originalKeyword":"水热法"},{"id":"2fc4319a-5a9c-462f-a512-0ce2967a1342","keyword":"PEG","originalKeyword":"PEG"}],"language":"zh","publisherId":"rgjtxb98201508037","title":"PEG修饰NaGdF4∶Yb3+/Er3+纳米粒子合成及上转换发光性质","volume":"44","year":"2015"}],"totalpage":83,"totalrecord":828}