{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以聚己内酯二元醇(CAPA)为软缎,甲苯二异氰酸酯(TDI)为硬段,二羟甲基丙酸(DMPA)为亲水单体,采用自乳化法制备了水性聚氨酯乳液,并用此聚氨酯乳液与羧基丁苯胶(XSBRL)以及外加交联剂氮丙啶(aziridine)进行复配制得水性聚氨酯/羧基丁苯胶复合乳液。实验研究了此复合乳液对纸张的表面施胶性能,并优化了合成工艺条件。研究表明,当n能,并且氮丙啶的加入能进一步提高纸张的表面强度和。","authors":[{"authorName":"李轩","id":"aa4919ec-18e6-449a-a877-7effd83f9c1d","originalAuthorName":"李轩"},{"authorName":"沈一丁","id":"6ee8e250-3674-4286-9b17-4dd855470257","originalAuthorName":"沈一丁"},{"authorName":"李小瑞","id":"7bac6cba-cfd6-4f6f-ad4e-67e30b1a383d","originalAuthorName":"李小瑞"},{"authorName":"费贵强","id":"0ddd57a1-e6ff-4d3b-8849-5a915ba32444","originalAuthorName":"费贵强"},{"authorName":"史阳阳","id":"a2f84a1e-c6d6-4cf5-924d-bec14301c284","originalAuthorName":"史阳阳"}],"doi":"","fpage":"2096","id":"45571ce9-ebec-4665-9084-efd37735f5d5","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"51073861-7953-40e9-a025-91155ab7db2b","keyword":"聚氨酯","originalKeyword":"聚氨酯"},{"id":"c407b0df-4845-4602-8097-69408da2040e","keyword":"表面施胶","originalKeyword":"表面施胶"},{"id":"3163ef04-0b5a-4624-a0c0-19e1b004e282","keyword":"表面强度","originalKeyword":"表面强度"},{"id":"c4adbcb4-8c95-44f9-b1f1-4c188481d271","keyword":"","originalKeyword":"耐折度"},{"id":"3b8683f1-b076-4c6c-aafb-f3bcbe34f973","keyword":"交联","originalKeyword":"交联"}],"language":"zh","publisherId":"gncl201111044","title":"聚氨酯/羧基丁苯胶胶乳的表面施胶及其交联对纸张表面强度及的影响","volume":"42","year":"2011"},{"abstractinfo":"以聚己内酯二元醇(PCL,Mn=1000)、甲苯二异氰酸酯(TDI)和二羟甲基丙酸(DMPA)为原料,采用自乳化法制备水性聚氨酯(WPU)乳液,并用此聚氨酯乳液与聚乙烯醇(PVA)以及外加交联剂氮丙啶进行复配制得 WPU/PVA 复合乳液。实验研究了m(WPU)/m(PVA)对复合乳液性能及纸张表面性能的影响。研究表明,当复合乳液中 WP U含量为75%,此WPU/PVA复合乳液具有优异的表面施胶性能,纸张达到1025次,干湿强度分别为162.3,57.4 N,施胶达到97 s。并通过红外光谱(FT-IR)、动态激光光散射法(DLS)及热重分析(TGA)对聚合物进行了表征。","authors":[{"authorName":"费贵强","id":"3ddc308e-b96a-4551-8d0e-740bfeb81335","originalAuthorName":"费贵强"},{"authorName":"王永超","id":"bc3cf405-b3a6-4600-a4d7-82533109e462","originalAuthorName":"王永超"},{"authorName":"王海花","id":"35d19dc3-734e-4bb8-92a4-47a23a3a123f","originalAuthorName":"王海花"},{"authorName":"朱科","id":"c84826e9-f184-4626-8653-107f81f4b196","originalAuthorName":"朱科"}],"doi":"10.3969/j.issn.1001-9731.2014.18.032","fpage":"18148","id":"40d2251d-a9ed-46dc-b796-d52faec2f9e8","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8cd13276-4834-4cc9-8535-1a7a0c92ea2a","keyword":"水性聚氨酯","originalKeyword":"水性聚氨酯"},{"id":"4fb16ab0-4a80-4612-bc29-215d42eef935","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"be01f9cc-808c-4d53-ab9c-83f48bb836cd","keyword":"表面施胶剂","originalKeyword":"表面施胶剂"},{"id":"c4517d4b-2d5d-47b5-aaef-64e8014aa85a","keyword":"交联","originalKeyword":"交联"},{"id":"18845966-7b0b-4891-81cc-783cfcc0b1d6","keyword":"","originalKeyword":"耐折度"}],"language":"zh","publisherId":"gncl201418032","title":"水性聚氨酯/聚乙烯醇复合表面施胶剂在特种纸上的应用?","volume":"","year":"2014"},{"abstractinfo":"本文运用溶解参数理论,对非晶态聚氯乙烯在73种有机溶剂中的耐蚀性进行了统计分析,提出以 △δ_A=","authors":[{"authorName":"钮淦襄","id":"3a9eacd2-b035-4d30-9970-ec15cd0e8cab","originalAuthorName":"钮淦襄"}],"categoryName":"|","doi":"","fpage":"271","id":"bff94d58-4cb6-4978-8713-6c48a44630c8","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"862f3518-9969-4957-be40-d3f971030fb3"}],"language":"zh","publisherId":"1005-4537_1991_3_12","title":"以溶解参数图评定聚氯乙烯有机溶剂性能","volume":"11","year":"1991"},{"abstractinfo":"测定了不饱和聚酯树脂、环氧树脂的溶解参数(δ),研究了合成树脂的δ和其玻璃纤维增强塑料有机溶剂腐蚀性的关系。结果表明:合成树脂的δ可用以作为大致评定其玻璃纤维增强塑料有机溶剂腐蚀的依据。弱氢键溶剂的δ在11.8、中强氢键溶剂在9.9、强氢键溶剂在14.5(Cal/cm~3)~(1/2)左右时,对一般的热固性玻璃纤维增强塑料有较强的侵蚀作用。由于在不同氢键类型的溶剂中,树脂的δ是不相同的,因此用树脂的δ来评定其玻璃纤维增强塑料有机溶剂性时,必须注意溶剂氢键的强弱。","authors":[{"authorName":"陶婉蓉","id":"af3e9d85-4fa6-4973-92af-125b144d1807","originalAuthorName":"陶婉蓉"},{"authorName":"赵玉庭","id":"59090232-4efb-44ae-93dc-e89340498897","originalAuthorName":"赵玉庭"},{"authorName":"施美英","id":"eceae32c-8514-49b2-bfd8-87c776881d88","originalAuthorName":"施美英"},{"authorName":"陈国醒","id":"beeb3a2c-dc71-4250-9c86-c87af22db335","originalAuthorName":"陈国醒"},{"authorName":"王金焕","id":"0df083e9-9844-4d8c-8d69-b120ce37c89c","originalAuthorName":"王金焕"}],"categoryName":"|","doi":"","fpage":"295","id":"3320521e-897d-446a-9c22-5da76428b7f5","issue":"4","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[],"language":"zh","publisherId":"1005-4537_1984_4_8","title":"合成树脂的溶解参数与其玻璃纤维增强塑料有机溶剂腐蚀性的关系","volume":"4","year":"1984"},{"abstractinfo":"本文采用Bell-Delaware换热器设计方法研究了传统弓形流板换热器加热轻油时在不同管束排列角度下,改变换热器壳侧流板间距以及改变流板的窗口高度对管壳式换热器的壳体内径、换热管数目、壳侧换热系数及壳侧压降的影响.","authors":[{"authorName":"黄文江","id":"d6bbe6b8-268b-4b02-aa8f-57ee21196dcf","originalAuthorName":"黄文江"},{"authorName":"张剑飞","id":"7031c243-878e-4a54-8fbf-e19c3d803f60","originalAuthorName":"张剑飞"},{"authorName":"陶文铨","id":"1618513b-1fd8-496b-9c13-60b4681ee0ab","originalAuthorName":"陶文铨"}],"doi":"","fpage":"1022","id":"e3964cdd-a6f0-4758-a742-2897c6c1bf37","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"65703f1a-64e2-4b5b-a20b-b66ee24b97a8","keyword":"管壳式换热器","originalKeyword":"管壳式换热器"},{"id":"f67b97eb-8f4e-4818-ae96-876875d689df","keyword":"弓形流板","originalKeyword":"弓形折流板"},{"id":"c21e6228-eca0-45ed-a9ce-cc634c8c8ba1","keyword":"结构优化","originalKeyword":"结构优化"}],"language":"zh","publisherId":"gcrwlxb200706039","title":"弓形流板换热器中流板对换热器性能的影响","volume":"28","year":"2007"},{"abstractinfo":"采用CFD数值模拟方法和周期性全截面计算模型,对三角形布管方式下的帘式流片换热器流栅装配方式、流栅间距、流片倾角和流片宽度等几何结构参数对传热和压降的影响规律进行了数值研究,并采用实验测试验证了数值模拟方法及其结果的正确性和准确.研究结果表明,流栅间距、流片倾角对帘式流片换热器壳程流体传热和阻降性能有显著影响,流栅装配方式、流片宽度对其影响较小,建议流栅间距取为150 mm以内,流片倾角取为45°以内较为合适.","authors":[{"authorName":"古新","id":"e0db340d-7a7a-4adc-80f5-1faaa8581c6e","originalAuthorName":"古新"},{"authorName":"王珂","id":"97784d3a-2635-409f-a683-ba84e9dc6d02","originalAuthorName":"王珂"},{"authorName":"刘冰","id":"65394bcc-c15e-4b44-b263-c3df5bd1f80d","originalAuthorName":"刘冰"},{"authorName":"朱培纳","id":"097b8f10-69eb-4f7e-8a79-14adc3026dba","originalAuthorName":"朱培纳"},{"authorName":"郝建设","id":"aea9b79a-da73-460b-9b6b-a2b9873e5faf","originalAuthorName":"郝建设"}],"doi":"","fpage":"1327","id":"e62a3f36-342c-474f-8dce-30160da1ee77","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f4d2e459-8661-4d9c-a1ec-7898b833a663","keyword":"管壳式换热器","originalKeyword":"管壳式换热器"},{"id":"f9d45c33-1115-42a7-b7fd-e7ce16b8542b","keyword":"帘式流片","originalKeyword":"帘式折流片"},{"id":"adf20f4b-35b6-4f96-a265-941f5c263f56","keyword":"斜向流","originalKeyword":"斜向流"},{"id":"2b468b6a-e79e-498e-a566-d0b2706642bf","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201307031","title":"三角形布管帘式流片换热器传热和流阻性能研究","volume":"34","year":"2013"},{"abstractinfo":"对材质为20钢的无缝管内缺陷进行了扫描电镜以及金相显微镜检测分析,经检测分析,该折叠缺陷产生原因为钢坯内部疏松严重并有硫化物聚集,在穿管过程中暴露在管内壁,这种伴随有夹杂的组织缺陷在轧制过程中无法焊合从而形成内壁折叠缺陷.","authors":[{"authorName":"李智丽","id":"42601762-7299-4c48-9cd1-43f19bc9eb32","originalAuthorName":"李智丽"}],"doi":"","fpage":"56","id":"95db8d18-982c-4de5-90f2-8f48135df265","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"8bc37080-8ece-4178-bb57-0d03505c34a2","keyword":"无缝管","originalKeyword":"无缝管"},{"id":"b813c838-4137-406f-a975-d25f4e08c4ef","keyword":"内","originalKeyword":"内折"},{"id":"b71f82b5-68de-4221-8e1f-253b6703e3f2","keyword":"扫描电镜","originalKeyword":"扫描电镜"}],"language":"zh","publisherId":"wlcs200902014","title":"无缝管内缺陷分析","volume":"27","year":"2009"},{"abstractinfo":"在流杆换热器的基础上,以水为流动介质,采用数值计算的方法,对不同流杆杆型与间隔组合的流杆式换热器进行流动与传热特性的分析.结果表明,流杆杆型为椭圆杆,流杆间隔为120 mm时,性能最好.","authors":[{"authorName":"马雷","id":"20a2ca44-f456-465a-8631-0e6139afee9f","originalAuthorName":"马雷"},{"authorName":"王英双","id":"0eca84f0-37b9-4831-9028-6a589be8436c","originalAuthorName":"王英双"},{"authorName":"杨杰","id":"d49d8627-6a9d-447d-be6f-80e8d7cf6708","originalAuthorName":"杨杰"},{"authorName":"刘志春","id":"52e6b7f4-f1c7-4519-83e0-352e4d7decdf","originalAuthorName":"刘志春"},{"authorName":"刘伟","id":"ab0e59c1-8157-4371-9dd3-c1ff3252ba7c","originalAuthorName":"刘伟"}],"doi":"","fpage":"462","id":"161415bf-4747-42cc-bff4-82ade69d6327","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c1fbdf4d-099c-4fa9-a80d-40006c098590","keyword":"换热器","originalKeyword":"换热器"},{"id":"b4066f3c-d0af-44c8-b491-272d60863b8c","keyword":"流杆","originalKeyword":"折流杆"},{"id":"940e41ce-6a4c-4df2-83d5-a0a4bf5cf74e","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"b0258898-53bf-43c8-9de4-d34f053ed998","keyword":"强化传热","originalKeyword":"强化传热"}],"language":"zh","publisherId":"gcrwlxb201103027","title":"流杆换热器的数值模拟及优化设计","volume":"32","year":"2011"},{"abstractinfo":"建立了阿地平对映体的高效液相色谱拆分方法.采用Chiralpak AD-H (250 mm×4.6 mm,5.0 μm,Daicel公司)手性色谱柱在正相条件下直接拆分阿地平对映体,考察了固定相种类、流动相组成及柱温等对阿地平对映体分离的影响.确定了最佳的拆分条件:流动相为正己烷-异丙醇(90∶10,v/v),流速为0.8 mL/min,检测波长为254 nm;柱温为20 ℃;在此条件下阿地平对映体的分离为3.3.该法简单快速,重现性好.","authors":[{"authorName":"张恺","id":"6ddf633c-fb8e-4a9e-9e6e-4bf8ca39f87b","originalAuthorName":"张恺"},{"authorName":"薛娜","id":"a5bea90e-3e58-4f98-a542-f97fadf895f0","originalAuthorName":"薛娜"},{"authorName":"李林","id":"bc63720d-035a-458d-bb76-8e69ec437a58","originalAuthorName":"李林"},{"authorName":"李凡","id":"62b895f1-80ff-437a-b04b-3c989e366c58","originalAuthorName":"李凡"},{"authorName":"杜玉民","id":"d934f79e-443f-4134-a2bc-f5cf4cccc4f0","originalAuthorName":"杜玉民"}],"doi":"","fpage":"215","id":"929ab550-c72d-47c5-964f-b9c0c12d2c8a","issue":"2","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"d9927391-91b8-46a2-afa1-82acf249c144","keyword":"高效液相色谱法","originalKeyword":"高效液相色谱法"},{"id":"fd0ab3ed-6c0f-40c4-a3a0-9750afc386dc","keyword":"手性固定相","originalKeyword":"手性固定相"},{"id":"774cf51f-9ef7-40d4-86d2-6d61e13f08b3","keyword":"手性拆分","originalKeyword":"手性拆分"},{"id":"d99ae0cf-4a8d-47f2-a4d9-caca867a0f46","keyword":"阿地平","originalKeyword":"阿折地平"}],"language":"zh","publisherId":"sp201002020","title":"高效液相色谱手性固定相法拆分阿地平对映体","volume":"28","year":"2010"},{"abstractinfo":"本文提出了一种新型搭接螺旋流板换热器.数值模拟结果表明,相邻流板轴向周边重叠的结构有效地减轻了三角区漏流,使轴向速度沿径向的分布更加均匀;与1/4扇形螺旋流板换热器相比,其壳程传热系数更高,压降更低,综合性能在小螺旋角下更具优势.","authors":[{"authorName":"曹兴","id":"dd346409-c025-48f3-a9f7-2d5961c56ed5","originalAuthorName":"曹兴"},{"authorName":"杜文静","id":"cf7c7535-f3fa-47be-a532-3ee94b229260","originalAuthorName":"杜文静"},{"authorName":"程林","id":"baff8cc2-e815-4428-92b6-b89158072271","originalAuthorName":"程林"}],"doi":"","fpage":"1130","id":"70767943-4d2b-4e08-a46a-c2496aacb6a8","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f3e378f9-54b9-4ccb-97c2-8cdf62fd62df","keyword":"换热器","originalKeyword":"换热器"},{"id":"02c34803-c599-4f51-aaad-3e4c74e78cd0","keyword":"螺旋流板","originalKeyword":"螺旋折流板"},{"id":"11da2ef1-71ed-49f0-9c17-75249faf4e06","keyword":"搭接","originalKeyword":"搭接"},{"id":"05df452a-d7c3-4210-a643-af7bffbeb649","keyword":"新型","originalKeyword":"新型"},{"id":"8fc83991-b1a1-41a1-b2cf-9dac04649c4e","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201306030","title":"新型搭接螺旋流板换热器性能研究","volume":"34","year":"2013"}],"totalpage":1978,"totalrecord":19776}