{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以双氰胺和十二胺为原料,采用亲核加成反应,合成了十二烷基双胍盐(DODH).用FT-IR对合成产物的官能团结构进行了表征,并通过静态失重法和动电位极化法,考察了DODH对铜在5%HCl、5%NaHCO3及3%NaCl水溶液中的缓蚀效果.试验结果表明,在上述溶液中DODH对铜均具有缓蚀效果,其中在5%NaHCO3水溶液中的缓蚀效果最好,当用量为100 mg/L时缓蚀率可达98.4%;在5%HCl水溶液中,用量在100 mg/L时缓蚀率为79.3%;而在3%NaCl水溶液中,DODH的缓蚀效果一般.极化曲线分析表明,DODH是一种以抑制阴极过程为主、抑制阳极过程为辅的混合型缓蚀剂.","authors":[{"authorName":"史俊","id":"09813642-2cbb-412e-80f9-b8e04fadcd15","originalAuthorName":"史俊"},{"authorName":"王涛","id":"5804e5a6-8467-4d18-abca-8545da0c858d","originalAuthorName":"王涛"}],"doi":"","fpage":"844","id":"b329db7d-a1d6-48ae-9182-5cccf1c21e67","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"2b898387-5fc2-4f70-a009-bae41ecf8893","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"0919fb95-35e9-4eb0-b1c5-b3a74291a7d1","keyword":"紫铜","originalKeyword":"紫铜"},{"id":"70def3e2-d6c0-47dd-ba14-64d18a2c846a","keyword":"双胍","originalKeyword":"双胍"},{"id":"7d458b4b-5156-493e-9d85-ddaecf68e630","keyword":"静态失重","originalKeyword":"静态失重"},{"id":"37d3b2a8-e1ba-4f2d-b14e-b5f7fac15ca5","keyword":"动电位极化","originalKeyword":"动电位极化"}],"language":"zh","publisherId":"fsyfh201011006","title":"十二烷基双胍盐对金属铜的缓蚀性能","volume":"31","year":"2010"},{"abstractinfo":"以苯乙双胍为客体药物分子,层状双金属氢氧化物为载体,采用结构重建法制备出苯乙双胍/层状双金属氢氧化物纳米杂化物,考察了制备条件对杂化物载药量的影响,用X射线衍射、红外光谱等测试手段对所得产物进行了表征,并研究了纳米杂化物中苯乙双胍的释放行为.","authors":[{"authorName":"岳美娥","id":"3cedc3b4-416a-45fb-a52d-39a414b7dc0f","originalAuthorName":"岳美娥"},{"authorName":"徐洁","id":"4bca1db6-4c73-41f8-9dd4-c29c0bffe425","originalAuthorName":"徐洁"},{"authorName":"侯万国","id":"6923b49a-8217-418d-bb65-dc629b919d9e","originalAuthorName":"侯万国"}],"doi":"","fpage":"111","id":"3044f898-48fd-408f-9c09-8ea708fe5000","issue":"24","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3902b700-45fd-4742-82ec-21ad494ce9c0","keyword":"层状双金属氯氧化物","originalKeyword":"层状双金属氯氧化物"},{"id":"c7350a10-51d1-4f8c-9e2a-3a1518775845","keyword":"苯乙双胍","originalKeyword":"苯乙双胍"},{"id":"c9091b28-9a74-41c2-b9e2-536f421b9f3e","keyword":"纳米杂化物","originalKeyword":"纳米杂化物"}],"language":"zh","publisherId":"cldb201024031","title":"苯乙双胍/类水滑石纳米杂化物的制备及体外释药行为研究","volume":"24","year":"2010"},{"abstractinfo":"以对甲苯胺为原料对双氰胺进行改性,合成了一种新型的改性双氰胺固化剂--对甲基苯基双胍盐酸盐.利用DSC方法考察了产物固化环氧树脂E-44体系的固化性能,结果表明,作为环氧树脂固化剂单独使用时,固化温度比双氰胺体系(180℃)降低了近60℃.确定固化工艺为80℃/2 h+100℃/1 h.","authors":[{"authorName":"史俊","id":"6b8ec1e1-96f3-4b4e-a160-552cc6b60545","originalAuthorName":"史俊"},{"authorName":"崔进","id":"e622bf9d-99ee-490f-b6ef-565e2bbeec18","originalAuthorName":"崔进"},{"authorName":"李芳明","id":"c2c4c496-1633-4758-92b2-4d99311fb64b","originalAuthorName":"李芳明"}],"doi":"10.3969/j.issn.0253-4312.2007.02.015","fpage":"44","id":"256b965e-2db9-4b3f-b539-44d816ce5826","issue":"2","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"3142e2eb-6cb2-4f3c-8afe-b20aff313b9c","keyword":"对甲苯基双胍盐酸盐","originalKeyword":"对甲苯基双胍盐酸盐"},{"id":"41f41b5b-0de2-4ad4-a099-4ab5b90f1921","keyword":"固化剂","originalKeyword":"固化剂"},{"id":"63a8336f-35d3-4842-a22d-58a66ea43200","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"e2ec016e-b44a-4b8f-a271-67e3732d189d","keyword":"固化性能","originalKeyword":"固化性能"}],"language":"zh","publisherId":"tlgy200702015","title":"对甲苯基双胍盐酸盐的合成及性能研究","volume":"37","year":"2007"},{"abstractinfo":"采用邻甲苯基双胍作为环氧粉末涂料的固化剂,测试了该固化体系的凝胶时间,采用差热分析(DSC)研究了该体系的固化动力学参数,根据Kissinger方程和Ozawa方程,计算得出活化能分别为70.36 kJ/mol和72.8 kJ/mol,反应级数为0.95.","authors":[{"authorName":"郑亚萍","id":"edc8acc6-4315-467f-92ca-814d136367f9","originalAuthorName":"郑亚萍"},{"authorName":"王翠利","id":"916df5bf-6119-4f3a-a9c2-a0a6f8f634a5","originalAuthorName":"王翠利"},{"authorName":"张娇霞","id":"1cda1c9d-b254-4675-871c-11449155f16d","originalAuthorName":"张娇霞"},{"authorName":"丁培盈","id":"61fce2da-939e-4d7c-b204-ef21f540440e","originalAuthorName":"丁培盈"}],"doi":"10.3969/j.issn.0253-4312.2009.01.011","fpage":"32","id":"53266501-b8a5-4e42-9906-a1b27c0eb8b3","issue":"1","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"30cc56e5-96c1-414a-8106-ed891b0ae8ea","keyword":"环氧粉末涂料","originalKeyword":"环氧粉末涂料"},{"id":"2fc55140-5e25-45b8-af7e-a77a94fffb97","keyword":"反应级数","originalKeyword":"反应级数"},{"id":"c7411a2d-0574-4b46-a58b-54de38af7d24","keyword":"动力学参数","originalKeyword":"动力学参数"},{"id":"5fcbb47a-cd88-4d48-8d25-4bb664eb4bfe","keyword":"邻甲苯基双胍","originalKeyword":"邻甲苯基双胍"}],"language":"zh","publisherId":"tlgy200901011","title":"环氧树脂/邻甲苯基双胍粉末涂料反应性研究","volume":"39","year":"2009"},{"abstractinfo":"研究了酸度对苯胺与双氰胺加成反应生成苯基双胍的影响. 结果表明,酸度较低时,该反应的速率随酸度增加而显著增加. 当pH=2.5时,反应速率达到最大值. 酸度继续增加,反应速率逐渐减小. 对苯胺和双氰胺的酸碱平衡的计算表明,随酸度的增加,在pH>2.5时,双氰胺的氰基质子化程度增大占主导地位,从而有利于苯胺的亲核加成,使加成反应速率增大;在pH<2.5时,苯胺与质子结合生成苯胺离子占主导地位,因而明显降低了亲核试剂的浓度,使反应速率减小. 在pH<3.5时,水分子作为亲核试剂可参与竞争反应,双氰胺发生水解而使主反应的产率降低. 通过IR、13C NMR、元素分析测试技术结果证明,副产物为脒基脲.","authors":[{"authorName":"郭丽萍","id":"1424a550-d823-4bb6-beca-37cd77f30e64","originalAuthorName":"郭丽萍"},{"authorName":"杜小弟","id":"87c8cec9-ea42-4924-8782-0f2efaeb069d","originalAuthorName":"杜小弟"},{"authorName":"雷家珩","id":"b068e782-516b-4792-b4f4-fd4b2f987d6f","originalAuthorName":"雷家珩"},{"authorName":"赵嘉锡","id":"26ea9086-2b29-42c7-abce-802262a8d4e9","originalAuthorName":"赵嘉锡"}],"doi":"10.3969/j.issn.1000-0518.2008.09.018","fpage":"1082","id":"dd2422ad-4c56-48eb-bbfa-634f1958af90","issue":"9","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"e3ac55c9-cddc-42db-ae33-f6923949fd90","keyword":"苯基双胍","originalKeyword":"苯基双胍"},{"id":"5c88ef74-02db-4eee-818c-73ca51d51377","keyword":"苯胺","originalKeyword":"苯胺"},{"id":"49806291-df68-43dc-9e27-9b6ede153bc5","keyword":"双氰胺","originalKeyword":"双氰胺"},{"id":"a5822bef-aa92-4191-a707-a6ea0dbff503","keyword":"脒基脲","originalKeyword":"脒基脲"},{"id":"d59011db-ef78-4e00-9c15-deaacd2e1321","keyword":"高效液相色谱","originalKeyword":"高效液相色谱"}],"language":"zh","publisherId":"yyhx200809018","title":"酸度对苯基双胍合成反应的影响及其作用机理","volume":"25","year":"2008"},{"abstractinfo":"在乙醇中以乙酸稀土或在无水乙醇中以无水氯化钕与二甲双胍(以DMBG表示)反应,合成了二甲双胍乙酸钕、钐和二甲双胍氯化钕3种固态配合物. 元素分析、ICP、IR、UV、荧光光谱等测试技术研究表明,配合物的化学组成分别为Re(DMBG)2(CH3COO)3(Re=Nd(Ⅲ),Sm(Ⅲ)离子,CH3COO-为乙酸根)和Nd(DMBG)2(EtO)Cl2(EtO为乙氧基阴离子). 通过糖尿病小鼠模型观察了它们的降血糖作用,通过ESR谱测定了对人工脂质体膜超氧自由基的清除率. 实验结果表明,二甲双胍乙酸钕[Nd(DMBG)2(CH3COO)3]的降血糖作用和对超氧离子自由基的清除率均高于盐酸二甲双胍(Metformin,Dimethylbiguamide hydrochloride简称DMBG·HCl),表明其降血糖作用与其抗氧化作用或对细胞膜的保护作用具有相关性.","authors":[{"authorName":"叶琰","id":"82625701-4b8b-4be5-9cc5-e5af541b478f","originalAuthorName":"叶琰"},{"authorName":"李秀娟","id":"98e5060d-ab86-440a-981c-d0be5dc07c0c","originalAuthorName":"李秀娟"},{"authorName":"曾正志","id":"4de25f68-9a38-4e16-9353-72106f638ad0","originalAuthorName":"曾正志"}],"doi":"10.3969/j.issn.1000-0518.2005.10.004","fpage":"1060","id":"84293edd-8886-4c74-a31a-fb376294c7f4","issue":"10","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"55076ea5-acfa-4c7c-8b4a-1c78a9cafc28","keyword":"二甲双胍","originalKeyword":"二甲双胍"},{"id":"0f2287bd-7111-45a4-8284-2e1ffa3fae98","keyword":"稀土配合物","originalKeyword":"稀土配合物"},{"id":"ca328de4-c96d-4f5c-a550-239f1931cfa3","keyword":"降血糖","originalKeyword":"降血糖"},{"id":"451ae827-fb03-4b6c-867b-37285b4f2cee","keyword":"抗氧化作用","originalKeyword":"抗氧化作用"}],"language":"zh","publisherId":"yyhx200510004","title":"二甲双胍稀土配合物的合成、降血糖和抗氧化作用","volume":"22","year":"2005"},{"abstractinfo":"建立了双胶束电动毛细管色谱(MEKC)分离测定复方化学消毒剂中有效成分聚六亚甲基单胍(PHMG)、聚六亚甲基双胍(PHMB)、醋酸洗必泰(CHA)及苄索氯铵(BTC)的新方法。以50.2 cm(有效长度:40 cm)×50μm i.d.未涂层熔融石英毛细管为分离柱,20 mmol/L硼砂﹢30 mmol/L十二烷基硫酸钠(SDS)﹢5 mmol/L脱氧胆酸钠( SD)﹢0.8 g/L聚乙二醇20000为分离缓冲溶液。详细研究了分离缓冲溶液中各组分浓度、样品提取液对分离的影响。4种物质的检出限和定量限均分别为1 mg/L和3 mg/L。4种物质的校正峰面积与相应质量浓度在3~140 mg/L范围内,均具有良好的线性关系,相关系数均大于0.999。回收率在84.1%~109.6%间,相对标准偏差( RSD)均低于6%。用该法测定了11件复方化学消毒剂样品中 PHMG、PHMB、CHA和 BTC,与产品标识值基本吻合。该法可成功区分单胍与双胍,且操作简单,适用于消毒产品的质量监督。","authors":[{"authorName":"刘文叶","id":"6ef0dae2-6d11-42e3-86b9-75611075418d","originalAuthorName":"刘文叶"},{"authorName":"乔宏","id":"a6a836a0-35c4-4fb4-8ced-95989758f4e2","originalAuthorName":"乔宏"},{"authorName":"赵珊","id":"5a4d6773-917e-435a-ace9-5290c9aa6933","originalAuthorName":"赵珊"},{"authorName":"李疆","id":"b2ce3897-2713-446a-8364-fe0002c6d57d","originalAuthorName":"李疆"},{"authorName":"丁晓静","id":"9099fd9c-551e-4f7f-b53b-e92c14eeec5a","originalAuthorName":"丁晓静"}],"doi":"10.3724/SP.J.1123.2015.10029","fpage":"332","id":"a7d206d9-ace3-4e6c-8d00-d7fd0663c2b5","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"438e1d70-fe3d-4bbf-9628-7c714fd016af","keyword":"胶束电动毛细管色谱","originalKeyword":"胶束电动毛细管色谱"},{"id":"732d8573-4e91-464b-941e-4f0912a4184d","keyword":"聚六亚甲基单胍","originalKeyword":"聚六亚甲基单胍"},{"id":"d7a87c82-5d9d-42d0-9465-72f1e5f1b08a","keyword":"聚六亚甲基双胍","originalKeyword":"聚六亚甲基双胍"},{"id":"d7380573-0ee3-4a99-a34f-b28e75b68116","keyword":"醋酸洗必泰","originalKeyword":"醋酸洗必泰"},{"id":"7ae3ca23-1c02-4e7f-8510-482c3cd2743c","keyword":"苄索氯铵","originalKeyword":"苄索氯铵"},{"id":"827eb9b9-0b02-4979-9615-063eb4e80cfe","keyword":"复方化学消毒剂","originalKeyword":"复方化学消毒剂"}],"language":"zh","publisherId":"sp201603017","title":"双胶束电动毛细管色谱测定复方化学消毒剂中聚六亚甲基单胍、聚六亚甲基双胍、醋酸洗必泰和苄索氯铵","volume":"34","year":"2016"},{"abstractinfo":"根据非等温和等温DSC数据,采用等转化率法和模型拟合法对环氧树脂/对甲基苯基双胍体系的固化反应过程进行了研究,分析了固化体系在非等温和等温条件下的固化规律.并通过Malek最大概然函数机理法确定了固化反应机理函数,计算出固化反应动力学模型参数.结果表明,考虑了扩散影响的等温自催化反应速率模型对该体系等温固化过程的预测数据与DSC实验数据吻合得更好.同时,在比较非等温和等温自催化动力学模型的计算值与实验值的基础上,结合活化能随固化度的变化规律,对不同温度条件、不同转化率下固化体系的反应历程和机理进行分析,为工业应用中固化工艺条件的优化 提供了理论依据.","authors":[{"authorName":"何自强","id":"157ce770-1516-4335-ae17-af11f8e4418a","originalAuthorName":"何自强"},{"authorName":"张惠玲","id":"0448b1c2-1dfd-4277-9f93-4035837d0d36","originalAuthorName":"张惠玲"}],"doi":"","fpage":"53","id":"4179eb0c-0916-425c-9926-5c79a6715f4f","issue":"12","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"7bf3f996-8cc9-4a1e-a486-b8a43bdafdc2","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"5e7843ce-94b7-412b-b67e-a659236ce59b","keyword":"DSC分析","originalKeyword":"DSC分析"},{"id":"46805d47-b264-4e40-83af-eec08cc10cb8","keyword":"固化反应","originalKeyword":"固化反应"},{"id":"9b64aba2-e781-406a-b489-f760b0df4bd2","keyword":"反应动力学","originalKeyword":"反应动力学"}],"language":"zh","publisherId":"blgfhcl201512009","title":"环氧树脂/对甲基苯基双胍固化反应动力学研究","volume":"","year":"2015"},{"abstractinfo":"采用熔融缩聚的方法合成了聚亚己基胍盐酸盐(PHGC)及聚亚己基双胍盐酸盐(PHBG).应用气相渗透压法(VPO)及粘度法测定了其分子质量,应用元素分析,FT-IR,XPS分析了聚合物的化学组成.抗菌活性的研究结果表明所合成的胍基聚合物具有较强的而且广谱的抗菌性能.","authors":[{"authorName":"李光","id":"0ff7d2ae-8c00-4dc2-95d0-7672cb0b203a","originalAuthorName":"李光"},{"authorName":"陈红","id":"1afe5357-4c8e-43fa-aff2-c9e84cdf035a","originalAuthorName":"陈红"},{"authorName":"江建明","id":"745e2e94-419f-4755-ae33-cc4aa056bf61","originalAuthorName":"江建明"}],"doi":"","fpage":"85","id":"7531538a-cf84-4fbc-be19-8186c029941e","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3a6d607b-da1a-417b-b993-d40cd9338559","keyword":"胍基聚合物","originalKeyword":"胍基聚合物"},{"id":"fc7578e4-86c3-4208-b43c-2b341768b16e","keyword":"合成","originalKeyword":"合成"},{"id":"82ea6161-3ece-4a14-8ecd-6da572ea77e7","keyword":"结构","originalKeyword":"结构"},{"id":"5b72eab2-6282-496e-b1a2-71ac351cb4c0","keyword":"抗菌性能","originalKeyword":"抗菌性能"}],"language":"zh","publisherId":"gfzclkxygc200204021","title":"胍基聚合物的合成及抗菌性能","volume":"18","year":"2002"},{"abstractinfo":"在碱性条件下,以溴代十六烷(C16 H33Br)为醚化剂、羟丙基胍胶(HPG)为原料制备了疏水改性羟丙基胍胶(HmHPG-R16),确定各原料最佳质量比m(HPG):m(C16 H33Br):m(NaOH)=3:3:0.25.Hm-HPG-R16样品的外观形貌较HPG更加规整.HPG和Hm-HPG-R16溶液性能研究表明,当溶液浓度高于临界缔合浓度cac时,Hm-HPG-R16溶液表现黏度(η)随浓度的增加趋势较HPG大,且溶液的稳定性较HPG得到了很大改善.","authors":[{"authorName":"宫瑞英","id":"3504a683-33ee-41f2-82a2-4925d049c16a","originalAuthorName":"宫瑞英"},{"authorName":"吴文辉","id":"582756f1-388d-4c65-9726-fd17a58de72b","originalAuthorName":"吴文辉"},{"authorName":"史学峰","id":"9f9a2769-7e57-49b5-925a-cd3e477a5c4a","originalAuthorName":"史学峰"}],"doi":"","fpage":"132","id":"f3e7e519-49a9-4b4a-9490-78e5fd719166","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5bca4348-1548-4326-bcce-3191d6e28b19","keyword":"羟丙基胍胶","originalKeyword":"羟丙基胍胶"},{"id":"c87e5985-d509-44d5-8d53-ae396e4397cf","keyword":"疏水改性","originalKeyword":"疏水改性"},{"id":"4e9f2c72-aef9-4c30-a587-49bc1e328ad9","keyword":"表观黏度","originalKeyword":"表观黏度"}],"language":"zh","publisherId":"gfzclkxygc200906037","title":"疏水改性羟丙基胍胶的制备及性能","volume":"25","year":"2009"}],"totalpage":711,"totalrecord":7107}