{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文介绍了以单胺为封端剂,溶液聚合BMI/DDM/ER树脂配比对力学及电学性能的影响,研究了树脂的反应性,确定了树脂的固化工艺制度,测试了用该树脂和高硅氧纤维制备的复合材料的力学、电学性能.结果表明,该树脂能湿法成型,在120℃可进行固化反应,复合材料具有良好的机械性能与介电性能.在工频下tgδ为0.0044,在高频1MHz下tgδ为0.0051.它可用作宽频断、耐高温绝缘材料的基体.","authors":[{"authorName":"黄志雄","id":"749a5e95-1882-4621-8ed6-b59224fe2153","originalAuthorName":"黄志雄"},{"authorName":"郭丽玲","id":"d4224e8f-f324-40dd-8916-b2fc337d1918","originalAuthorName":"郭丽玲"},{"authorName":"周祖福","id":"66f3caf0-e081-40e7-8249-7ae2c4b7e27b","originalAuthorName":"周祖福"}],"doi":"10.3969/j.issn.1003-0999.2002.01.008","fpage":"21","id":"cea0e1a4-f9f3-47fe-8190-14c5129943f8","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"8bcd93e3-90cd-4628-9b03-59563d4b70c8","keyword":"双马来酰亚胺","originalKeyword":"双马来酰亚胺"},{"id":"aae82de4-a69a-432c-b85a-e56bc60237e6","keyword":"高硅氧纤维","originalKeyword":"高硅氧纤维"},{"id":"e24c8206-a4d2-45d8-bbdb-1cdbb95be464","keyword":"溶液聚合","originalKeyword":"溶液聚合"},{"id":"9681d99c-8791-4cfe-8fb5-435ebd3d4f0c","keyword":"耐高温材料","originalKeyword":"耐高温材料"},{"id":"be1eecd9-51f1-4f06-a681-8f91f4a4a76e","keyword":"绝缘复合材料","originalKeyword":"绝缘复合材料"}],"language":"zh","publisherId":"blgfhcl200201008","title":"溶液聚合BMI/DDM/ER树脂基绝缘复合材料的研究","volume":"","year":"2002"},{"abstractinfo":"采用涂覆有机-无机杂化涂层的方法对高硅氧纤维(HSGF)进行表面改性.涂覆前后的纤维表面特性采用XPS和AFM进行表征;采用浸泡法腐蚀实验研究了涂层对HSGF耐酸腐蚀能力的影响;通过测试界面剪切强度(IFSS)评价了复合材料的界面粘结性能,并测试了涂层前后HSGF及其增强磷酸盐基复合材料力学性能.结果表明,聚甲基苯基硅氧烷(PSI)涂层可有效地保护高硅氧纤维,阻碍磷酸盐基体/高硅氧纤维之间的界面反应,降低磷酸对其的腐蚀速率,调节界面结合程度,使复合材料弯曲强度比未处理试样提高32%.","authors":[{"authorName":"吴丽娜","id":"cf8fd967-7e78-4f7f-bd55-718ab21e34b0","originalAuthorName":"吴丽娜"},{"authorName":"黄玉东","id":"644f55f0-b052-4051-8e29-02b86ad79459","originalAuthorName":"黄玉东"},{"authorName":"刘丽","id":"d2356d60-2782-4009-a60a-0c12184958dc","originalAuthorName":"刘丽"}],"doi":"10.3969/j.issn.1005-5053.2009.04.018","fpage":"85","id":"faa47b12-2897-4241-9aeb-8f372e06daca","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"5a639108-c3a9-4089-b6e6-437ba22dd301","keyword":"磷酸盐","originalKeyword":"磷酸盐"},{"id":"a92ddb9c-77b4-405f-b63a-3914b5512651","keyword":"腐蚀性","originalKeyword":"腐蚀性"},{"id":"06f70151-1b87-4dab-87c8-7c39caea8343","keyword":"涂层","originalKeyword":"涂层"},{"id":"7ba64f6e-751d-4140-abc5-47a866613c70","keyword":"聚甲基苯基硅氧烷","originalKeyword":"聚甲基苯基硅氧烷"},{"id":"5f03cb3c-1773-4a9e-93d7-5f58e69a3ee7","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"hkclxb200904018","title":"聚甲基苯基硅氧烷涂层对高硅氧纤维/磷酸盐性能的影响","volume":"29","year":"2009"},{"abstractinfo":"以无碱玻璃纤维为原料,采用酸沥滤工艺制备了高硅氧微纤维,研究了不同的搅拌形式和搅拌速度对纤维中SiO2含量和纤维宏观形貌的影响.结果表明:适当提高搅拌速度可以加速分散,但过高的搅拌速度不仅会造成SiO2含量的降低,而且会严重影响纤维的长度;采用双向搅拌,且搅拌转速在75 r·min-1时,可以获得SiO2质量分数为97.38%的高硅氧微纤维,其比表面积为364.59m2·g-1,平均孔径为0.73 nm.","authors":[{"authorName":"李斌","id":"14ade86e-d4e0-4d73-84b1-5e8b9c321256","originalAuthorName":"李斌"},{"authorName":"陈敏","id":"5c42db92-2c67-4227-9303-da64e7d44ab2","originalAuthorName":"陈敏"}],"doi":"","fpage":"40","id":"8cfc589d-38d5-4314-8e2c-9bb8aeab04b6","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"b0a732bc-a1d2-4b96-82dd-cc9de64872a7","keyword":"分散工艺","originalKeyword":"分散工艺"},{"id":"07e4e0bb-151f-47df-aa32-4cd50f4795a0","keyword":"高硅氧微纤维","originalKeyword":"高硅氧微纤维"},{"id":"e5b76b39-be25-446f-9242-053f271b3a0a","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"283c46db-d43e-44b2-aed5-a3c525706af9","keyword":"宏观形貌","originalKeyword":"宏观形貌"}],"language":"zh","publisherId":"jxgccl201301011","title":"分散工艺对酸沥滤法制备高硅氧微纤维的影响","volume":"37","year":"2013"},{"abstractinfo":"以溶胶浸渍法,将SO42-/ZrO2固体超强酸负载到由酸沥滤工艺制备的多孔高硅氧纤维上,并用于催化合成乙酸正丁酯。研究结果表明,该催化剂具有用量少,酯收率较高,产物易于分离等优点;而且使用寿命长,重复用于5次合成后,酯化率仍高于70%。","authors":[{"authorName":"林金溪","id":"3b0a0201-0513-4674-8fe5-814b40d7f639","originalAuthorName":"林金溪"},{"authorName":"何静","id":"5f5bc4ce-6f2b-4c37-a9fd-95db2dc01f62","originalAuthorName":"何静"},{"authorName":"丁马太","id":"25ec6ce7-d9b0-430f-9c00-dad4bfafb5aa","originalAuthorName":"丁马太"},{"authorName":"陈立富","id":"953ce252-5d35-4482-90ea-c1c7e17f8fe3","originalAuthorName":"陈立富"}],"doi":"","fpage":"227","id":"e6c2131d-0f75-442b-9abb-e2ee7cf6f1da","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"58474449-cc4c-4513-bcae-eb1e897d7518","keyword":"多孔高硅氧纤维","originalKeyword":"多孔高硅氧纤维"},{"id":"cab54cfb-5d47-4441-af1e-8bb72db594de","keyword":"固体超强酸","originalKeyword":"固体超强酸"},{"id":"81425a74-a235-43e0-a771-acef3d641cb1","keyword":"酯化","originalKeyword":"酯化"}],"language":"zh","publisherId":"gncl201202023","title":"固体超强酸于多孔高硅氧纤维的负载及其在酯化中的应用","volume":"43","year":"2012"},{"abstractinfo":"制备了一种新型的防热隔热一体化材料--碳--高硅氧纤维增强C--SiC复合材料,\n沿厚度方向从抗烧蚀层渐次过渡到隔热层, 其组成依次是致密C/C--SiC, 致密C/C, 多孔C/C,\n通过界面处过渡到变密度多孔HSF/C. 这种材料既具有抗烧蚀性能又具有隔热性能.\nC/C--SiC复合材料的烧蚀表面平滑, 线烧蚀率只有0.028 mm/s.\n烧蚀性能的提高得益于SiC颗粒原位氧化生成SiO$_{2}$黏附在碳材料表面,\n对氧气有一定的阻挡遮蔽作用. 密度为0.80 g/cm$^{3}$的HSF/C材料, 热导率为0.59 W/mK.\n在碳纤维与高硅氧织物的界面处, 针刺纤维与热解碳的结合良好,\n密度为1.69 g/cm$^{3}$的C--HSF/C复合材料界面处的剪切强度达到16.7 MPa","authors":[{"authorName":"周星明","id":"ae46f774-6b6c-45bb-8611-2f44989ddaaa","originalAuthorName":"周星明"},{"authorName":"汤素芳","id":"b31a9b3f-981e-4fc8-8ea2-5e8a214bd6cf","originalAuthorName":"汤素芳"},{"authorName":"邓景屹","id":"c03d93b9-45d6-4e56-a6db-1d9528045a59","originalAuthorName":"邓景屹"}],"categoryName":"|","doi":"","fpage":"148","id":"aacf603c-702c-4e53-92f9-120befd21eb1","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"0eb01fef-5013-4413-bd06-56ba767f4577","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"190afa55-e773-4853-a7a0-c5595fad358b","keyword":"null","originalKeyword":"null"},{"id":"94b14b06-c572-49d6-a7ff-b8aec176289e","keyword":"null","originalKeyword":"null"},{"id":"44713e7a-17d3-4b92-878c-94cdfd6a03c5","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_2006_2_13","title":"碳--高硅氧纤维增强 C--SiC防热隔热一体化材料","volume":"20","year":"2006"},{"abstractinfo":"制备了一种新型的防热隔热一体化材料-碳-高硅氧纤维增强C-SiC复合材料,沿厚度方向从抗烧蚀层渐次过渡到隔热层,其组成依次是致密C/C-SiC,致密C/C,多孔C/C,通过界面处过渡到变密度多孔HSF/C.这种材料既具有抗烧蚀性能又具有隔热性能.C/C-SiC复合材料的烧蚀表面平滑,线烧蚀率只有0.028 mm/s.烧蚀性能的提高得益于SiC颗粒原位氧化生成SiO2黏附在碳材料表面,对氧气有一定的阻挡遮蔽作用.密度为0.80 g/cm3的HSF/C材料,热导率为0.59W/mK.在碳纤维与高硅氧织物的界面处,针刺纤维与热解碳的结合良好,密度为1.69 g/cm3的C-HSF/C复合材料界面处的剪切强度达到16.7 MPa.","authors":[{"authorName":"周星明","id":"568797df-a577-463c-bd46-cad926f45d3b","originalAuthorName":"周星明"},{"authorName":"汤素芳","id":"13bdf6e9-2936-4aa1-962c-99dda9ed8f97","originalAuthorName":"汤素芳"},{"authorName":"邓景屹","id":"190ab007-776a-4de7-8f98-a24cb58bfc7c","originalAuthorName":"邓景屹"},{"authorName":"刘文川","id":"a18b7a82-f57f-4a96-a9f4-059203f8a368","originalAuthorName":"刘文川"},{"authorName":"杜海峰","id":"929658de-a6da-492c-a9df-3756bd1911a9","originalAuthorName":"杜海峰"}],"doi":"10.3321/j.issn:1005-3093.2006.02.007","fpage":"148","id":"6f37b993-6030-4446-9817-bb9b1c8e1914","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"1f0e75f9-5b43-4497-b296-5ad759c1ca22","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d71a8eec-4ebd-4f5e-b5e6-ea9c1da0fafa","keyword":"化学气相渗","originalKeyword":"化学气相渗"},{"id":"5c3fbc4c-8a74-4611-a07e-acba05b96436","keyword":"防热","originalKeyword":"防热"},{"id":"3ab98582-091d-464a-a232-6fbb22cf3dd1","keyword":"隔热","originalKeyword":"隔热"}],"language":"zh","publisherId":"clyjxb200602007","title":"碳-高硅氧纤维增强C-SiC防热隔热一体化材料","volume":"20","year":"2006"},{"abstractinfo":"通过用PCD刀具对高硅氧玻璃纤维/酚醛树脂复合材料的车削试验,采用正交试验和回归分析法,研究了切削用量三要素对切削力的影响规律,建立了切削力的经验模型.结果表明,背吃刀量是影响切削力的主要因素,增大背吃刀量时主切削力和进给力都显著增大;增大进给量也使主切削力增大,但其影响小于背吃刀量;而切削速度对切削力的影响很小.所建切削力经验公式可作为切削加工该复合材料时切削用量选择及切削力控制的依据.","authors":[{"authorName":"肖继明","id":"2a799f21-6c78-49bf-8644-dc5ee949b42f","originalAuthorName":"肖继明"},{"authorName":"侯晓莉","id":"d1c88326-8b29-4445-a23e-de054a4b01b8","originalAuthorName":"侯晓莉"},{"authorName":"张波","id":"8fc05cfe-e1f3-4b58-bd44-ff43914a8f92","originalAuthorName":"张波"},{"authorName":"刘杰","id":"5b698ac8-e3f4-459c-bc81-e19c72e95e8b","originalAuthorName":"刘杰"},{"authorName":"刘荣涛","id":"bf260f51-b037-4995-9e29-a3244d09d60a","originalAuthorName":"刘荣涛"}],"doi":"10.3969/j.issn.1007-2330.2009.03.016","fpage":"64","id":"d894caf3-1553-4eef-ad75-bcc3ed61768e","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"7c8550e3-400a-41a3-9708-db07b9fca4be","keyword":"高硅氧玻璃纤维/酚醛树脂复合材料","originalKeyword":"高硅氧玻璃纤维/酚醛树脂复合材料"},{"id":"3bb14f9f-a995-4f20-a35d-9981bb76fa94","keyword":"车削试验","originalKeyword":"车削试验"},{"id":"348829a5-a218-43c0-b57c-29aa429c38e6","keyword":"切削力","originalKeyword":"切削力"},{"id":"b6ab6c56-5532-4d04-8e6c-c141542fc2a8","keyword":"经验模型","originalKeyword":"经验模型"}],"language":"zh","publisherId":"yhclgy200903016","title":"高硅氧玻璃纤维/酚醛树脂复合材料切削力的试验研究","volume":"39","year":"2009"},{"abstractinfo":"对高硅氧玻璃纤维布增强聚四氟乙烯(PTFE)复合材料的含胶量、成型压力、烧结温度及环境湿度等多种因素对其介电性能的影响进行了较为系统的实验研究.结果表明,高硅氧玻璃纤维布增强聚四氟乙烯复合材料在上述因素影响下,其介电常数在2.90~3.30的范围内变化,其中环境湿度是主要的影响因素.","authors":[{"authorName":"姜卫陵","id":"2ddb50f7-8a4f-47c2-9cad-e3f8444162de","originalAuthorName":"姜卫陵"},{"authorName":"赵云峰","id":"3a02c7a5-062a-49bc-acd5-48b93b2eba60","originalAuthorName":"赵云峰"},{"authorName":"罗平","id":"8b533b36-fa00-4b2d-bad5-a173843df7ff","originalAuthorName":"罗平"}],"doi":"10.3969/j.issn.1007-2330.2000.01.007","fpage":"34","id":"a6e219a5-7b62-4f2d-ab05-54ddca6fe403","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"dda616fb-99cf-4335-b1e9-3dbf44dedc0d","keyword":"高硅氧玻璃布","originalKeyword":"高硅氧玻璃布"},{"id":"22c6f28c-f27f-492a-b2be-c2cf615ee64c","keyword":"聚四氟乙烯","originalKeyword":"聚四氟乙烯"},{"id":"9911163e-ac40-4637-8eb8-9a88a668b5d2","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"59c80bed-c9d2-48e6-bd08-a69b44423aab","keyword":"介电常数","originalKeyword":"介电常数"},{"id":"610cbe78-2679-4e55-a440-583c3b0cccba","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"yhclgy200001007","title":"高硅氧玻璃纤维布增强聚四氟乙烯(PTFE)复合材料介电性能研究","volume":"30","year":"2000"},{"abstractinfo":"令不同氧含量的聚碳硅烷氧化交联丝在高纯氨气中氮化热解、脱碳氨化,继而在高纯氮气下高温热引发缩合/转氨基反应,生成硅氧氮烷并最终形成氧含量不同的硅氧氮(Si-O-N)陶瓷纤维。XRD、EP-MA和 TEM研究结果显示,所有元素在硅氮氧纤维中均匀分布,随着交联丝 O 含量增加,Si-O-N 陶瓷纤维的 O 含量随之增加,力学性能下降,而陶瓷产率则先升后降。高氧时纤维陶瓷产率下降是因为在高温热解时发生了相分解。XRD 和 TEM结果表明,氧含量不同的陶瓷纤维经1500℃高温处理后,均仍为无定型。氧可能对氮化硅的结晶有抑制作用。","authors":[{"authorName":"陈剑铭","id":"a5a2fc13-8500-4d59-846b-dfb5e2ee724b","originalAuthorName":"陈剑铭"},{"authorName":"夏文丽","id":"867d292a-9351-48f9-b6e4-3f2107d36528","originalAuthorName":"夏文丽"},{"authorName":"姚艳波","id":"82724575-ed52-49e8-b32c-6127d8d503d0","originalAuthorName":"姚艳波"},{"authorName":"刘玲","id":"0082fce6-6004-4cca-ba16-77525bc31c58","originalAuthorName":"刘玲"},{"authorName":"丁绍楠","id":"330c4de5-6b65-4d8a-99a7-f7c201d40a01","originalAuthorName":"丁绍楠"},{"authorName":"刘安华","id":"62f77ddb-8b19-4bf8-9a7f-41f8c91194f0","originalAuthorName":"刘安华"}],"doi":"10.3969/j.issn.1001-9731.2013.24.015","fpage":"3587","id":"673c4b91-30f7-499c-9665-45e72caefaf0","issue":"24","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"07b3ceb1-4151-4503-9b83-7bf438e0210c","keyword":"聚碳硅烷","originalKeyword":"聚碳硅烷"},{"id":"934b7b1c-368b-4022-9827-3141b941d3c3","keyword":"先驱体转化法","originalKeyword":"先驱体转化法"},{"id":"dead5c17-b64f-461e-b0ac-b913395c8c46","keyword":"氮化热解法","originalKeyword":"氮化热解法"},{"id":"6ae6354b-fb8f-44e6-9079-8586e1f9e0d6","keyword":"氧含量","originalKeyword":"氧含量"},{"id":"0d0243f4-82f2-4db2-8578-5dc1bf1e47bd","keyword":"硅氧氮纤维","originalKeyword":"硅氧氮纤维"}],"language":"zh","publisherId":"gncl201324015","title":"氧含量对硅氧氮纤维结构的影响","volume":"","year":"2013"},{"abstractinfo":"详细描述了掺杂高硅氧玻璃的制备工艺及研究进展,并简要介绍了它们的主要应用.","authors":[{"authorName":"谢康","id":"e6fb7b2b-d78f-4028-bf8f-63e5cc1f228b","originalAuthorName":"谢康"},{"authorName":"赵修建","id":"0d104529-e725-4618-a6ff-2dafd247bda6","originalAuthorName":"赵修建"},{"authorName":"周永恒","id":"e4dcd178-b025-4b59-a5f8-65eef6c9abd1","originalAuthorName":"周永恒"},{"authorName":"顾真安","id":"fcc0656f-94bd-4def-bcea-9d2ef835845d","originalAuthorName":"顾真安"}],"doi":"","fpage":"38","id":"371d8ef1-063e-4c15-a54b-d40012c1b68a","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f174b790-08b6-4151-b6cf-7986b56e9b1b","keyword":"多孔玻璃","originalKeyword":"多孔玻璃"},{"id":"4195709a-bd19-4f93-8d44-1105fb0ac22f","keyword":"高硅氧玻璃","originalKeyword":"高硅氧玻璃"},{"id":"11054601-b4bb-4ab3-af1a-be6e6dcd269c","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"cldb200103014","title":"掺杂高硅氧玻璃的制备和应用","volume":"15","year":"2001"}],"totalpage":4536,"totalrecord":45354}