{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":1,"startPagecode":1},"records":[{"abstractinfo":"介绍一种GaAs单片超高速模拟开关IC的设计和制备.电路设计采用了独特的开关管导通时栅-源电压跟随和开关管关断时栅-源电压箝位的电路,使开关获得良好的线性和3ns的开启和关断超高速特性,满足了毫微秒脉冲相关信号的处理要求.","authors":[{"authorName":"王云生","id":"bbceff79-5c4e-4854-9954-644377d7c0b6","originalAuthorName":"王云生"},{"authorName":"张绵","id":"599b019e-0500-4568-98b8-f749ba311802","originalAuthorName":"张绵"},{"authorName":"赵静","id":"d77b4236-ca6a-44c3-9f06-eef7306d949c","originalAuthorName":"赵静"},{"authorName":"白锡","id":"d8e45bed-9caa-4113-8f0c-fc5effe8bbc4","originalAuthorName":"白锡巍"}],"doi":"10.3969/j.issn.1007-4252.2000.03.020","fpage":"208","id":"10471bfe-f2f7-499e-a0db-d00de6a8fde7","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"2782bae0-5fe0-4494-8f14-8bb80d565104","keyword":"砷化镓","originalKeyword":"砷化镓"},{"id":"1cd6462c-9b31-4640-a1ec-a1f3730b53ce","keyword":"模拟开关","originalKeyword":"模拟开关"},{"id":"366d7155-6ef2-44d5-b91f-5900520a0011","keyword":"集成电路","originalKeyword":"集成电路"},{"id":"1eb6837b-e6b3-4611-83e4-1f96bbfe7077","keyword":"相关器","originalKeyword":"相关器"}],"language":"zh","publisherId":"gnclyqjxb200003020","title":"毫微秒脉冲相关器应用的GaAs单片超高速模拟开关IC","volume":"6","year":"2000"},{"abstractinfo":"在无光照条件下测量背栅时,部分半绝缘砷化镓材料呈现明显低频振荡.对振荡特性进行了初步研究,并观察了振荡对GaAsMESFET噪声性能的影响.实验结果表明了采用不同低频振荡特性的材料制备器件时,其噪声性能也有差别.","authors":[{"authorName":"张绵","id":"0ecc32ef-ede1-4e25-9a87-4a52eec85ffc","originalAuthorName":"张绵"},{"authorName":"王云生","id":"17ff4880-4cb6-4d7c-957e-67739ed620fa","originalAuthorName":"王云生"},{"authorName":"李岚","id":"e96b164c-afa8-4e11-9fbc-208f91a4ede1","originalAuthorName":"李岚"},{"authorName":"白锡","id":"e8c5efbf-907f-4a6f-b4c4-b26268f6f2c9","originalAuthorName":"白锡巍"}],"doi":"10.3969/j.issn.1007-4252.2000.03.017","fpage":"197","id":"9b0f9ee5-6fd4-4de0-882c-9cb4b17de5eb","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"d47bc18b-1c97-4dae-81b1-f5ab404e5d3c","keyword":"半绝缘GaAs","originalKeyword":"半绝缘GaAs"},{"id":"12e51575-6f10-4319-945f-fd82c923c1e9","keyword":"低频振荡","originalKeyword":"低频振荡"},{"id":"e42bfe5a-7905-48aa-99e1-0b02c39e5eca","keyword":"噪声","originalKeyword":"噪声"}],"language":"zh","publisherId":"gnclyqjxb200003017","title":"半绝缘砷化镓中的低频振荡及其对FET噪声性能的影响","volume":"6","year":"2000"},{"abstractinfo":"根据《吴仲华奖励基金章程》(吴奖[2008]01号),经各高等院校、中国工程热物理学会和中国科学院工程热物理研究所认真评选和推荐,吴仲华奖励基金理事会评审并确定授予青年学者戴、罗坤、唐桂华“吴仲华优秀青年学者奖”,授予程雪涛等10位同学“吴仲华优秀学生奖”。","authors":[],"doi":"","fpage":"0003","id":"6f0ba2a8-05d9-4d8a-8139-230c2fa7e582","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1d50df37-d3bd-4afd-b0bc-96fcef367f18","keyword":"基金","originalKeyword":"基金"},{"id":"96f9e366-8b92-4e45-a8dd-4cf57f7c7890","keyword":"奖励","originalKeyword":"奖励"},{"id":"ddda9152-b951-4a3a-a74b-df9c31c71fdd","keyword":"评选","originalKeyword":"评选"},{"id":"b457f4f4-07c3-4491-8696-b0fe00c86d52","keyword":"获奖者","originalKeyword":"获奖者"},{"id":"ba4efb8c-78da-4883-9ae3-5a4a6746f396","keyword":"中国科学院","originalKeyword":"中国科学院"},{"id":"5d901c8f-96a3-4df7-bc14-2bcd72c081a4","keyword":"青年学者","originalKeyword":"青年学者"},{"id":"8a8e4fab-befc-419f-acb8-1abf6556d4ea","keyword":"物理研究所","originalKeyword":"物理研究所"},{"id":"d399f276-b272-4e7a-b3e7-28290b5ba79d","keyword":"高等院校","originalKeyword":"高等院校"}],"language":"zh","publisherId":"gcrwlxb201202047","title":"第四届“吴仲华奖励基金”评选出获奖者","volume":"33","year":"2012"},{"abstractinfo":"向Zn-35%Sn合金中加入不同含量的镁元素,研究了镁含量对该合金显微组织和力学性能的影响,并分析了拉伸断口形貌.结果表明:加入微量的镁元素就会对Zn-35%Sn合金的显微组织和力学性能产生显著影响(伸长率急剧下降);加入到合金中的镁元素,一部分固溶于富锌的η相中,使该相原子沿垂直于密排面方向堆垛,形成棒状组织;另一部分与锡反应生成Mg2Sn,Mg2Sn作为异质晶核促进脆锡相(γ-Sn)的形核生长,且阻碍脆锡相向白锡相(β-Sn)的同素异构转变,使脆性组织保留下来;随着镁含量的增加,η相棒状晶粒尺寸增大,取向性逐渐明显,断裂解理面变大,塑韧性急剧下降.","authors":[{"authorName":"王璐","id":"f3cc6928-0832-491a-939e-45831fa11095","originalAuthorName":"王璐"},{"authorName":"史庆南","id":"5c996018-074f-462d-8078-8b9759be727c","originalAuthorName":"史庆南"},{"authorName":"起华荣","id":"c416870d-8dab-468e-befb-b7d0b6ad100b","originalAuthorName":"起华荣"},{"authorName":"赵启淞","id":"7c0b468f-d75d-407f-8bbb-05006a801ffa","originalAuthorName":"赵启淞"},{"authorName":"姜义","id":"00920503-79bb-4b13-853e-7983ae5f050c","originalAuthorName":"姜义"}],"doi":"","fpage":"17","id":"bcb9c000-92c7-46e5-85cf-0fb39c9842b9","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"71efc151-eeed-497b-9d51-ef773a1302b0","keyword":"锌锡合金","originalKeyword":"锌锡合金"},{"id":"7ec64e64-9fe8-4f7e-a31a-7f0f2c608486","keyword":"镁","originalKeyword":"镁"},{"id":"3d2625b7-ab26-484c-a60f-a19570ebef7c","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"fb8b90ed-17e1-45d3-92ff-76d68beed38b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jxgccl201310005","title":"镁含量对Zn-35%Sn合金显微组织和力学性能的影响","volume":"37","year":"2013"},{"abstractinfo":"桑危郑牛樱裕桑牵粒裕桑希。希啤。龋伲模遥希牵牛。桑危模眨茫牛摹。模眨茫裕桑蹋拧。拢遥桑裕裕蹋拧。裕遥粒危樱桑裕桑希。桑。罚保罚怠。粒蹋眨停桑危眨汀。粒蹋蹋希?##2##3##4##5INVESTIGATIONOFHYDROGENINDUCEDDUCTILEBRITTLETRANSITIONIN7175ALUMINUMALLOY$R.G.Seng:B.JZhong,MG.ZengandP.Geng(DepartmentofMaterialsScierce,ScienceCollege,NorthearsternUniveisity,Shenyang110006,ChinaMaruscriptreceived4September1995inrevisedform20April1996)Abstrac:Effectsofhydrogenonthemechanicalpropertiesofdifferentlyaged7175aluminumalloyswereinvestigatedbyusingcathodicH-permeation,slowstrainratetensionandsoon.Theresultsindicatethatboththeyieldstressandthepercentagereductionofareadecreasewithincreasinghydrogenchargingtime,andthedegreeofreductiondecreasesasagingtimeincreasesforthesamehydrogenchargingtime.Keywords:hydrogeninducedductile-brittletransition,7175aluminumalloy,mechanicalproperty,cathodicH-permeation1.IntroductionForalongtimehydrogenembrittlementproblemwasthoughttobeabsentinhighstrengthaluminiumalloybecausethesolutiondegreeofhydrogeninaluminumatcommontemperatureandpressureisverysmall.However,hydrogenembrittlementphenomenonwasfoundinaluminumalloyduringtheinvestigationofstresscorrosionandcorrosionfatigue[1-5].Therehavebeenonlyafewreportsofhydrogeninducedsofteningandhardening.Inthispaper,theeffectsofhydrogenonmechanicalpropertiesof7175aluminumalloywereinvestigatedbyusingcathodicalchargingwithhydrogenandslowtensiontests.2.ExperimentalProcedureTheexperimentalmaterialwas7175aluminumalloyforgingintheformofa43mminthicknessandwithcomposition(wt%).5.41Zn,2.54Mg.1.49Cu,0.22Cr,0.1Mn.0.1Ti,0.16Fe.0.11Si,balancedbyA1.Alloyplateof1.5mminthicknesswasobtainedbyhot(465℃)andtoldrollingto83%reductioninthickness.Thelongaxisofhydrogenchargedspecimensisalongtherollingdirection.Allspecimensweresolidsolutionedat480℃for70min,followedtyimmediatequenchinginwaterandthenagedat140℃for6h(A),16h(B)and98h(C).Thetreatmentof6hiscorrespondingtotheunderagedstate.16hthefirstpeak-agedstateand98hthesecondpeak-agedstate.Thespecimenswerepolishedsuccessivelyusingemerypaperbeforehydrogencharging.Thetensilespecimenswerecathodicallychargedina2NH_2SO_4solutionwithasmallamountofAs_2O_3forpromotinghydrogenabsorption,andwithacurrentdensityof20±1mA/cm ̄2atroomtemperature.ThehydrogencontentanalysiswascarriedoutonanLT-1Amodelionmassmicroprobeafterthesputteringdepthreached8nm.Theioncurrentsofhydrogenandaluminuminvariousagedstateswererecordedunderthesamecondition.ThetensiletestswereperformedonanAG-10TAmodeltestmachinewhichwascontrolledbycomputer.3.ExperimentalResultsTheratioofioncurrentstrengthofhydrogentoaluminumisrelatedtohydrogenconcentrationinhydrogenchargedspecimen.TheresultswereshowninTable1Thehydrogencontentincreaseswiththeincreaseincharingtime.Ofthethreeagedstates,theunderagedspecimenhasthehighesthydrogencontent.Theratioofyieldstrengthofhydrogenchargedandunchargedspecimenschangeswithhydrogenchargingtime,asshowninFig.1Itcanbeseenthattheyieldstrengthofhydrogenchargedspecimendecreasewithincreasinghydrogenchargingtime.Atthesamechargingtime,theyieldstressdecreasestheleastinthesecondpeak-agedstate,anddecreasesthemostintheunderagedstate.Itindicatesthattheunderagedspecimenismostsensitivetohydrogeninducedsoftening,whichisconsistentwiththeresultsofanotherhighstrengthaluminumalloy[6].TherelativechangesoftheradioofreductionofareawithhydrogenchargingtimearesummarizedinFig.2,whereΨ ̄0andΨ ̄Harethepercentagereductionofareaofthesamplewithoutandwithhydrogenchargingrespectively.Theradioofreductionofareareduceswhenhydrogenchargingtimeincreases,andthedecreasingdegreeofreductionofareaincreaseswithincreasingagingtime,ie,,theunderagedstateisthemostsensitivetohydrogenembrittlement.4.DiscussionItisknownfromtheresultsabovethatcathodicalchargingwithhydrogenleadstotheobviousdecreaseinthetensilestrengthandplasticityThisisbecausealargeamountofsolidsolutionhydrogenentersthespecimenintheprocessofhydrogenchargingSolidsolutionhydrogenisliabletoenterthecentreofdislocationundertheactionofdislocationtrap,henceraisingthemovabilityofdislocation.Thereforethedislocationsinhydrogenchargedspecimenmoveeasierthaninunchargedspecimen.soresultinginthereductionofyieldstrength[7].Whendislocationstartstomove,thecrystallatticeresistance(P-Nforce)whichitmustovercomeisgivenby:whereμismodulusofshear,visPoissonratio,aisspanofslipplane,bisatomspanofslipdirection.Moreover.theotherresistanceofdislocationmotionmayarisefromtheelasticinteractionofdislocation,theactionwithtreedislocationandetc.,itcanbeexpressedasfollows:whereαisconstant,XisdislocationspanSotheresistanceofdislocationmotioncanbewrittenasfollows:Becausehydrogenatomsreducetheatombondingstrengthafterhydrogencharging,shearmodulusμdecreasesandresultsinthereductionoff,therebytheyieldstressdecreases.Asthecentreofdislocationistheseriousdistortionzoneoflattice.thestresscanberelaxedafterhydrogenatomstuffing,andthesystemenergydecreases.Thusthecentreofdislocationisastrongtrapofhydrogen[8].Therefore,amovabledislocationcaptureshydrogenandmigratestograinboundaries.phaseboundariesorsurfaceofthespecimen,promotingthecrackiesformationandgrowth,thuscausingthelossofplasticity.Sincethelocalenrichmentofhydrogenisrealizedbydislocationtransporting(inthestageofdeformation),thelargerthereductionofyieldstress.theearlierarehydrogenatomstransportedtotheplaceofenrichment.Inaddition,thedamageofatombondingstrengthinducedbyhydrogenmakesthefracturestressdecrease[9]:whereCHishydrogenconcentration.σ_thisfracturestrengthbeforehydrogenchargingandisfracturestrengthafterhydrogencharging.Eq.(4)showsthatthematerialsmaybefracturedatalowerstraini.e.,brittlefractureoccurs.5.Conclusions(1)Hydrogencontentofdifferentlyagedspecimensincreaseswithincreasinghydrogenchargingtimethecapabilityofthealloytoabsorbhydrogeninunderagedstateisthestrongest.(2)Theyieldstressaswellasthepercentagereductionofareaof7175aluminumalloydecreaseashydrogenchargingtimeincreasesundervariousagedstates.(3)Underagedstateismostsensitivetohydrogeninducedsofteningandhardening.(4)Anexplanationwasofferedforthephenomenonofhydrogeninducedsofteninginthestageofdeformation,andhardeninginthestageoffracture.REFERENCES||1G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##61G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##A##BINVESTIGATION OF HYDROGEN INDUCED DUCTILE BRITTLE TRANSITION IN 7175 ALUMINUM ALLOY$$$$R.G.Seng: B.J Zhong, MG. Zeng and P. Geng(Department of Materials Scierce, Science College,Northearstern Univeisity, Shenyang 110006, China Maruscript received 4 September 1995 in revised form 20 April 1996)Abstrac:Effects of hydrogen on the mechanical properties of differently aged 7175 aluminum alloys were investigated by using cathodic H-permeation, slow strain rate tension and so on. The results indicate that both the yield stress and the percentage reduction of area decrease with increasing hydrogen charging time, and the degree of reduction decreases as aging time increases for the same hydrogen charging time.","authors":[],"categoryName":"|","doi":"","fpage":"287","id":"7ac43605-ecb4-4c40-bccf-aff54a0443ee","issue":"4","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"8a01f076-5c35-408f-b3ad-c127c8bf790b","keyword":":hydrogen induced ductile-brittle transition","originalKeyword":":hydrogen induced ductile-brittle transition"},{"id":"b747c9e8-023e-4916-b2ff-bb6ed1515f22","keyword":"null","originalKeyword":"null"},{"id":"fad5aecf-6596-40f3-9b80-c42ca41218df","keyword":"null","originalKeyword":"null"},{"id":"57b05f43-eaad-4019-a801-bf6bc65c79c7","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1996_4_6","title":"INVESTIGATION OF HYDROGEN INDUCED DUCTILE BRITTLE TRANSITION IN 7175 ALUMINUM ALLOY","volume":"9","year":"1996"},{"abstractinfo":"粒裕希停桑谩。疲希遥茫拧。停桑茫遥希樱茫希校佟。希拢樱牛遥郑粒裕桑希。希啤。停粒牵危牛裕遥希。樱校眨裕裕牛遥牛摹。粒蹋眨停桑危眨停樱桑蹋桑茫希。粒蹋蹋希佟。疲桑蹋停?##2##3##4##5ATOMICFORCEMICROSCOPYOBSERVATIONOFMAGNETRONSPUTTEREDALUMINUM-SILICONALLOYFILMSJ.W.Wu,J.H.FangandZ.H.Lu(NationalLaboratoryofMoleculeandBiomoleculeElectronics,SoutheastUniversity,Nanjing210096,ChinaManuscriptreceived27October1995)Abstrcat:Twodifferentsurfacemorphologycharacteristicsofmagnetronsputteredaluminumsilicon(Al-Si)alloyfilmsdepositedat0and200℃wereobservedbyatomicforcemicroscopy(AFM).Oneisirregularlyshapedgrainsputtogtheronaplane.TheotherisirregularlyshapedgrainsPiledupinspace.Nanometer-sizedparticleswithheightsfrom1.6to2.9nmwerefirstobserved.Onthebasisoftheseobservationsthegrowthmechanismofmagnetronsputteredfilmsisdiscussed.Keywords:magnetronsputtering,Al-Sialloy,surfacemorphology,atomicforcemicroscopy,filmgrowthmechanism1.IntroductionTheuseofaluminumalloys[1,2],inparticularAl-Si,isacommonfeatureinmanysinglelevelandmultilevelinterconnectionschemesadoptedinthemanufactureofmicroelectronicdevicesbecauseofseveraldesirableproperties.TheAl-Sigrainmorphology(size.geometryanddistributionofgrainsisassociatedwithstepcoverage[3],electromigration[4]andinterconnectsresistivity[5]etc..Thus,characterizationofAl-Sialloysurfacemorphologyisveryimportant,especiallywhenintegratedintensityincreasesandlinewidthsof0.3to0.5μmbecomecommon.Inthepasttwentyyears,theAl-Sialloysurfacemorphologywhichaffectsthereliabilityofmicroelectronicdeviceshasbeenwidelyinvestigatedbyscanningelectronmicroscopy(SEM),transmissionelectronmicroscopy(TEM)etc.[5-7].However,SEMandTEMhavetheirlimitationorinconvenience,forexample,theverticalresolutionofSEMisnothighandTEMneedscomplexsamplepreparation.Recently,anewgrainboundaryetchingmethodwasproposed ̄[8]whichalsoneedstroublesomechemicaletching.Atomicforcemicroscopy(AFM),sinceitsemerging,hasbecomemoreandmoreusefulinphysics,chemistry,materialsscienceandsurfacescience,becauseofitshighresolution,easeofsamplepreparationandrealsurfacetopography.Recently,discussion[9,10]waspresentedonhowAFMwillplayaroleinsemiconductorindustry.Asaresponsetothisdiscussion,weusedAFMtoinvestigateAl-SialloysurfacemorphologyandhaveobtainedsomeresultswhichcannotberevealedbySEMorTEM.ThisindicatesthatAFMisagoodcharacterizationtoolinsemiconductorindustry.2.SamplePreparationInourexperiments,aluminumwith30ppmsiliconwassputteredonsiliconsubstrateinbatchdepositionmodeAllthreefilmswiththicknessof1.6μmweredepositedusinganargonsputteringpressureof4.2×10 ̄-3Pa.TheotherdepositionparametersaredescribedinTable1.Thesubstratewascleanedusingstandardpremetallizationcleaningtechniquespriortofilmdeposition.3.ExperimentalResultsandDiscussionTheAFMmeasurementswereperformedonacommercialsystem(NanoscopeIII,DigitalInstruments,SantaBarbara).Thetipismadeofmicrofabricatedsiliconnitride(Si_3N_4)Itisattachedtoa200μmcantileverwithaforceconstantofabout0.12N/m.Beforethesurfaceofsamplewasexamined.agoodtipwithananometer-sizedprotrusionatitsendwasselectedbeforehand,whichcanbeobtainedbyimagingtheatomicstructureofmicasubstrateandagoldgrid.AtypicaloperatingforcebetweenthetipandAl-Sisamplesurfaceisoftheorderof10 ̄-8Nandallimagesweretakenatroomtemperatureinair.AtypicaltopographicviewoftheAl-SifilmsisshowninFig.1(allimagescansizeis5by5μma,bandcarerespectivelyforsample1,2,and3).FromFig.la,itcanbeseenthatirregularlyshapedgrainstiltinginvaryingdegreespileupinspace,andgroovesamongtheirregularlyshapedgrainsaredifficulttodecideatacertainarea(wedefineitascharacteristicA).Toourknowledge,onreportsonthesurfacemorphologyhavebeenpresentedbefore.InFig1b,however,irregularlyshapedgrainsassembleonaPlaneandgroovesamongtheirregularlyshapedgrainsareeasytodecide(wedefineitascharacteristicB),whichisinagreementwithmanypreviousreports[5-7].InFig.1c,bothcharacteristicA(arrowA)andcharacteristicB(arrowB)wereobserved.IndoingAFMexperiments,weselectedfivedifferentscanareastobeimagedforeachsampleandfoundthatallimagesofeachsamplearerespectivelysimilartoFig.1a,bandc.Also,wenotedthatthesurfaceofinFig.1a.WethinkthatdepositionparameterswillinfluenceAl-Sisurfacemorphology,andthetiltedgrainsmaybesusceptibletomicrocracking.Byreducingthescansizeareato2by2μm(Fig.2aandb).Weobtainedmanyidenticalresultsasdescribedabove,suchasirregularlyshapedgrainsetc.Forthefirsttime,wefoundnanometersizedparticlesonirregularlyshapedgrainsurfacewhichcannotberevealedbySEMbecausethediameterofthesenanoparticlesisabout10nmandtheheightofthesenanoparticlesisintherangeof1.6to2.9nm.Inimaging,wenotedthatrotatingthescandirectionandchangingthescanfrequencydidnotaffectthestructureofthesegrainsasshowninFig.2aandb,rulingoutthepossibilitythatscanninginfluencedtheshapeoftheseparticlesorcausedsomesimilarimagingartifacts.Also,wenotedthatthenanoparticleswerenotobservedontheslopesofthegrooves(Fig.2aandb).Thisphenomenoncanbeexplainedasfollows:thepotentialenergyattheslopeislargerthanthatelsewhere,sotheparticlesseemmorelikelytobedepositedontheseareaswithlowerpotentialenergy.Fig.2c,scansize250by250nm,isazoomtopographicimage(whiteoutlineinb).Itshowsunevendistributionofthenanoparticles.Andtheheightdifferenceofthenanoparticlesindicatesdifferentgrowingspeed.Wethinkbasedonthemorphologyofnanoparticles,thattheheightdifferenceandunevendistributionofthesenanoparticlesshowdifferentgrowingadvantageandindicatethatatomshaveenoughenergytomovetoasuitablegrowingspot.Theenergymaybefromthefollowingsources:surfacetemperaturefluctuation,stressdifferenceorcollisionbetweenhighspeedsputteredatoms.Thesenanoparticlesgoongrowingandformmanyirregularlyshapedgrains.AndtheseirregularlyshapedgrainsfurtherconnecteachotheraccordingtocharacteristicAorB,finallyformingtheAl-Sisurfacemorphology.4.ConclusionWecandrawthefollowingconclusionsfromtheabove.First,theexperimentalresultsshowedthatAFMisapowerfultooltoinvestigatethedetailsofAl-Sisurfacemorphologywhichcangreatlyenrichourknowledgeofthefilmgrowthmechanism.Second,depositionconditionsplayanimportantroleindeterminingtheAl-Sisurfacemorphology.Third,thetwoAl-Sisurfacemorphologycharacteristicsarethatirregularlyshapedgrainsassembleonaplaneandirregularlyshapedgrainstiltinginvaryingdegreespileupinspace.Fourth,forthefirsttime,nanoparticleswereobservedonirregularlyshapedgrainsurfacewhichsuggestedthatthefilmgrowthmechanismwasbyinhomogeneousnucleation.Acknowledgements-BeneficialdiscussionswereheldwithDr.ZhenandMr.Zhu.ThisworkwaspartiallysupportedbytheNationalNaturalScienceFoundationofChina.RFFERENCES||1D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)127.2D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)131.3D.pramanikandA.N.Saxena,SolidStateTechnol.33(1990)73.4S.S.IyerandC.Y.Worg,J.Appl.phys.57(1985)4594.5J.F.Smith,SolidStateTechnol.27(1984)135.6D.GerthandD.Katzer,ThinSolidFilm208(1992)67.7R.J.WilsonandB.L.Weiss,ThinSolidFilm207(1991)291.8E.G.Solley,J.H.Linn,R.W.BelcherandM.G.Shlepr,SolidStateTechnol33(1990)409I.SmithandRHowland,SolidStateTechnol.33(1990)53.10L.Peters,SemiconductorInternational16(1993)62.##61D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)127.2D.pramanikandA.N.Saxena,SolidStateTechnol.26(1983)131.3D.pramanikandA.N.Saxena,SolidStateTechnol.33(1990)73.4S.S.IyerandC.Y.Worg,J.Appl.phys.57(1985)4594.5J.F.Smith,SolidStateTechnol.27(1984)135.6D.GerthandD.Katzer,ThinSolidFilm208(1992)67.7R.J.WilsonandB.L.Weiss,ThinSolidFilm207(1991)291.8E.G.Solley,J.H.Linn,R.W.BelcherandM.G.Shlepr,SolidStateTechnol33(1990)409I.SmithandRHowland,SolidStateTechnol.33(1990)53.10L.Peters,SemiconductorInternational16(1993)62.##A##BATOMIC FORCE MICROSCOPY OBSERVATION OF MAGNETRON SPUTTERED ALUMINUM-SILICON ALLOY FILMS$$$$J.W.Wu,J.H. Fang and Z.H.Lu (National Laboratory of Molecule and Biomolecule Electronics,Southeast University,Nanjing 210096, China Manuscript received 27 October 1995)Abstrcat:Two different surface morphology characteristics of magnetron sputtered aluminumsilicon(Al-Si)alloy films deposited at 0 and 200℃ were observed by atomic force microscopy(AFM).One is irregularly shaped grains put togther on a plane.The other is irregularly shaped grains Piled up in space. Nanometer-sized particles with heights from 1.6 to 2.9 nm were first observed. On the basis of these observations the growth mechanism of magnetron sputtered films is discussed.","authors":[],"categoryName":"|","doi":"","fpage":"263","id":"f4ff465b-4be4-48e8-8e23-8a64eb84c0c4","issue":"4","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"e374dbf8-3d76-441a-b49e-15e5f0666bf6","keyword":":magnetron sputtering","originalKeyword":":magnetron sputtering"},{"id":"9385049d-2e69-4a47-9ccc-80fd8ba51972","keyword":"null","originalKeyword":"null"},{"id":"dc85d434-d12b-4ac9-ba8b-610f344a615b","keyword":"null","originalKeyword":"null"},{"id":"11cdc3e5-87e4-4144-a672-84a6de3d5d34","keyword":"null","originalKeyword":"null"},{"id":"1ee1a31c-cca5-4b51-b4d0-18e20c3f8c8a","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1996_4_15","title":"ATOMIC FORCE MICROSCOPY OBSERVATION OF MAGNETRON SPUTTERED ALUMINUM-SILICON ALLOY FILMS","volume":"9","year":"1996"},{"abstractinfo":"茫遥伲樱裕粒蹋蹋桑冢粒裕桑希。希啤。疲錩(38)Ni_(39)Si_(10)B_(13) METALLIC GLASS UNDER HELIUM ION IRRADIATION##2##3##4##5CRYSTALLIZATIONOFFe_(38)Ni_(39)Si_(10)B_(13)METALLICGLASSUNDERHELIUMIONIRRADIATION$YANGQifa(ChinaInstituteofAtomicEnergy,Beijing)ZHANGGuoguang;SHENWanshui(UniversityofScienceandTechnologyBeijing)Manuscriptreceived20February1995ThecrystallizationfeaturesofFe38Hi39Si10B13metallicglassunder100keVand6μA/cm2heliumionirradiationwithdifferentdosesarereported.ItisfoundthattheFe38Ni39Si10B13metallicglasscrystallizedundertheheliumionirradiationatthetemperaturelowerthantheordinarythermalcrystallizationtemperature.ThepreferentialprecipitationphaseisFeSi,andfollowedbytheeutecticphaseα-Fe.Thecriticaldosefortheformationofheliumbubblesinthematerialisaround5x10 ̄16/cm2.Thesensitivityofcrystallizationduetothetemperaturerisingunderheliumionirradiationandthemechanismofthesequenceofprecipitatedphasearebrieflydiscussed.Keywords:Fe38Ni39Si10B13,metallicglass,crystallization,helium,ionirradiationTheblisteringorflakingoffirstwallmaterialsinducedbyheliumionbombardment,whichisrelevanttothefirstwallsurfaceerosionandplasmacontamination,isacriticalproblemtobeconsideredinfusionengineering.Becauseofthefavourablyphysical,chemicalandotherproperties,especially,thebetterresistanceofblistering,metallicglassesareexpectedtobeapromisingcandidatematerialforthefirstwall.TyagiandNanderkarstudiedsystematicallytheblisteringphenomenaofsomemetallicglassmaterialsunderheliumionandprotonbombardmentwithvariousionenergy,ioncurrentdensityanddose,andfoundthecriticaldoseforblisteringofthesematerials[1-3].However,itisverysuspiciousthatmetallicglasseswillcrystallizeunderheliumionirradiationtolosetheiramorphouscharacter,whichwilldeterioratetheirproperties.GusevaandGordeevareportedthatFe40Ni40B20metallicglassbombardedbyheliumionwithenergyof40keVandionbeamcurrentdensitiesof5-40μA/cm2partiallycrystallizedbelowitsordinarythermalcrystallizationtemperature[4].ByusingXRDexamination,itwasfoundthatα-FeandM3B,M2BandMBwereprecipitated(whereM=FeandNi)underheliumionbombardmentwith5μA/cm2and100μA/cm2ioncurrentdensitiesrespectively.Nevertheless,TyagiandNanderkarfoundthatsomemetallicglassescrystallizedandsomedidnotundersameirradiatedparameters[1-3].Consequently,itisnecessarytoinvestigatetheirradiation-assisted-crystallizationfeatureofmetallicglassesbyheliumionirradiationfortheirapplicationinfusionengineering.Inpresentexperiment,thecrystallizationfeatureofFe38Ni39Si10B13metallicglassunderheliumionirradiationwithenergy100keVandvariousdosesintherangeof5×1016/cm2to1×1018/cm2,andthedistributionofheliumbubblesinmaterialaremeasuredbyusingtransmissionelectronmicroscope(TEM)andX-raydiffraction(XRD).1.ExperimentalApproachTheas-receivedFe-Ni-Si-Bmetallicglassribbonswith10mminwidthand0.2mminthicknessweresuppliedbyBeijingInstituteofMetallurgy.Thenominalcomposition(wt%)ofthematerialisNi47.37,Fe43.91,Si5.81andB2.91fromthechemicalanalysisandthecalculatedconstituentisFe38Ni39Si10B13.TheX-raydiffractogramofas-receivedmaterialdemonstratedthattheas-receivedmaterialhasagoodamoophouscharacter.Thetheimalcrystallizationprocessoftheas-receivedmaterialwastestedbydifferentialthermalanalysis(DTA).Theordinarythermalcrystallizationtemperaturewasdeterminedtobeabout490℃.Rectangularsampleswithanareaof1×2cmanddiscsampleswith3mmindiameterwereemployedrespectivelyforXRDandTEMexperiments.ThesamplesforXRDweremechanicallypolishedtomirrorsurfaee.Ontheotherhand,formakingTEMsamples,thepiecescutfromtheribbonwerethinnedto30μmthicknessfirst,thenpunchedout3mmdiscs,electrothinnedinamixedsolutionof10%perchloricacidand90%ethanolandfinally,thediscswereionmilledtoextendthethinarea.HeliumionirradiationofsampleswascarriedoutonTS51-200/ZKionimplanterinChinaInstituteofAtomicEnergy.ThesampleswerefixedonacopperholderwhichwascooledbyF-113coolant.Thevacuumintargetwasbetterthan3×10-3Paandthescanningareaofionbeamwasabout3×7cm.Thetemperatureridingofthesamplescausedbyionbeambombardmentwasmeasuredbythermalcouple.Undertheirradiationparametersofionbeamenergy100keVandionbeamcurrentdensity6μA/cm2,thetemperaturerisingofsampleswaslowerthan200℃.Theiondosesofimplantedsampleswerechosenfrom5×10 ̄16/cm2to1×10 ̄18/cm2inpresentexperiment.AJEOL-100CXTEMoperatedat100kVwasused.Thecalculatedmeanprojectrangeandrangestragghngofheliumionwithenergy100keVinthematerialwere306.9nmand85.5nmrespectively,whichwassimulatedbycodeTRIM86.2.Results2.1CrystallizationunderionirradiationTheselectedareadiffraction(SAD)patternsofun-irradiatedandirradiatedsamplesareshowninFig.l.Fortheun-irradiatedsample,thepatterniscomposedoftwoconcentricringswhichexhibitatypicalamorphousdiffractionfeature(Fig.la).Ontheotherhand,forirradiatedsamples,agroupofnewconcentricringsappearsonthebaseofamorphousdiffractionrings,whichmeanstheoccurrenceofpartialcrystallizationandtheformationofsomenewprecipitationphasesinoriginalamorphousmaterialsbyionirradiation.Withtheincreaseofiondose,theinitialamorpohousdiffractionringsbecomefainterandtheintensitiesofdiffractionringsprodueedbyprecipitatesdevelopehigher.Itisexpectedthatthecrystallizationinsamplesincreaseswiththeincreaseiniondose.Moreover,iftheiondoseislowerthan5×10 ̄17/cm2,thepatternsshowtypicalpolycrystallinediffractionfeaturewithrandomorientationandveryfinegrains(Figs.lbandlc),butfor1×10 ̄18/cm2iondose,somebrightspotsarise(Fig.ld),thismeansthatsomerelativelargegrainsformedinsampleunderirradiation.FromtheX-raydiffractogramofthesampleirradiatedbyheliumiontodoseof5×10 ̄17/cm2,thediffractionpoaksarestillamorpohousfeatureandnonewpeaks.Itispredictedthatthecrystallizationonlyoccursintheprojectedrangeofions.2.2AnalysisofprecipitationphaseFromindexingofdiffractionringsinFig.lbandFig.lc,theprecipitatephaseisanfcccrystallinestructure.InFig.ld,anadditionalbccphaseisfound(ring3,ring5andring8).Thecalculatedlatticeparametersforprecipitatephasesundervariousiondosesareasfollows:5×1016/cm2a=0.412nm(fcc)l×1017/cm2a=0.42lnm(fcc)5×1017/cm2a=0.428nm(fcc)l×1018/cm2a=0.478nm(fcc)a=0.292nm(bcc)UsingASTMindex,itisidentifiedthatthebccphaseisα-Fe(a=0.2866nm).Todeterminethefccprecipitatephase,weinspectedallcompoundswithfcccrystallinestructurecomposedofelementsFe,Ni,SiandB,foundthatthreecompoundsFeSi(a=0.446nm),FeNi3(a=0.353nm)andFe3Si(a=0.564nm),butthemostfavourablecompoundwasFeSi.Therefore,itisassumedthatthepreferentialprecipitatephaseisFeSi,andisfollowedbytheeutectcphaseα-Feundertheheliumionirradiation.2.3HeliumbubbledistributionThemorphologiesofheliumbubblesformedbyagglomerationofimplantedheliumionsareshowninFig.2.Thesmallblackdotspresentbubblesunderbrightfieldwiththeunderfocusingoperation.FromFig.2,itisrevealedthatbubbleslowerthedensity,butinflateinthedimensionwiththeincreaseiniondose.Moreover,underthehigherdosethebubblesjoinedtogether.Fig.3plotsthechangesofdensitiesanddiametersofbubbleswiththeiondose.ItisevidentthatthecriticaldosetoformbubblesinFe38Ni39Si10B13islowerthan5×1016/cm2,whichisslightdifferentfrom1×1017/cm2reportedbyTyagi[1].3.DiscussionAstheresultsreportedbyGusevaandGordeeva[4],theheliumirradiationcantrulybringonthepartialcrystallizationinmetallicglassFe38Ni39Si10B13belowitsordinarythermalcrystallizationtemperature.GusevaandGordeevaconfirmedthattheprecipitatesinFe40Ni40B20wasα-Fephaseunderheliumionirradiationof40keVenergyand5μA/cm2currentdensity,inwhichthetemperaturerisingofthesampleswaslowerthan200℃.Howerve,inpresentexperiment,thoughα-Fephaseisdetermined,notraceofM3B,M2BandMBprecipitatephaseisobserved,whichwasreportedbyaboveauthorsunderirradiationwithenergyof40keVandioncurrentdensityof30μA/cm2.Inaddition,theprecipitationprocessinpresentexperimentissomewhatdifferentfromtheprecipitationprocessreportedbyaboveauthors,thepreferentialprecipitationphaseisFeSi,andfollowedbytheeutecticphaseα-Fe.CrystallizationofamorphousFe40Ni40B20wasnotobservedbyTyagi,whichwasthesamematerialasthatusedbyGusevaandGordeeva,undertheirradiationwith100keVionenergyand30μA/cm2ioncurrentdensity[3].Itmayrelatetothetemperaturerisingofsamplesorsomethingelse.Accordingtothecomparisonandanalysis,itmaybeconcludedthatthecrystallizationofmetallicglassesisverysensitivetothetemperaturerisinginsamplescausedbyionbeamirradiation.ThereasonofthepreferentialphasetobeFeSiandfollowedα-Femaybethatinanamorphousmaterial,themetalloidelementsshouldkeepatthetotalcontentsabove20at%,otherwisesomeelementsorcompoundswillprecipitatetoremainthebalanceofchemicalcomposition.Therefore,astheprecipitationofFeSianddeclineofSicontentsinasample,FeandNimayprecipitateasaneutecticphaseaccordingtoaboveidea.Inthisexperiment,Feprecipitatedfirstly.ThedifferenceoflatticeparametersbetweenexperimentaldataandASTMstandarddatamayresultsintheexistencesofNiandBetcandincompletecrystallizationinsample.Thegeneralviewpointforirradiation-assisted-crystallizationofmetallicglassbelowtheirthermalcrystallizationtemperatureisthedisplacementdamagesinducedbycollosion-cascadebetweenincidentionsandtargetatoms.Thedisplacementdamagesprovidethenucleatingcentresandtheirradiation-assistedmigrationincreasesthecrystallizeddrivingforce,butnodirectrelationshipbetweenheliumandcrystallization.Thegrowthofagrainiscloselyattributedtothediffusionofneighbouringatomstothegrowingnucleus,whichisreliedonthetemperatureextremely,accordingly,thecrystallizationofmetallicglassisverysensitivetothetemperaturerisingfromionbeambombardmentinanirradiatedsample.4.Summary(l)TheFe38Ni39Si10B13metallicglasswillcrystallizebelowitsordinarythermalcrystallizationtemperatureunderheliumionirradiationwith100keVenergyand6μA/cm2ionbeamcurrentdensity.(2)ThepreferentialprecipitationphaseofthemetallicglassisFeSi,andfollowedbyaneutecticphaseα-Fe.(3)Thecriticaldoseformingheliumbubblesinthemetallicglassisabout5×1016/cm2,whichisslightlylowerthanthedosereportedbyTyagi.(4)Theirradiation-assisted-crystallizaofametallicglassesisverysensitivetothetemperaturerisingcausedbyionbeambombardmentinanirradiatedsample.Acknowledgements─TheauthorswouldliketothankthecolleaguesofIonImplantationGroupinChinaInstituteof.AtomicEnergy.forhelpinginsampleirradiation,alsotoProfe","authors":[],"categoryName":"|","doi":"","fpage":"204","id":"36a6a73c-0312-4679-9f7d-960e0c52cbda","issue":"3","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"af21fd7d-5c8d-4319-8917-59719c689d72","keyword":": Fe38Ni39Si10B13","originalKeyword":": Fe38Ni39Si10B13"},{"id":"3e557fe8-f148-44c3-a348-31353208139a","keyword":"null","originalKeyword":"null"},{"id":"97669fd1-8bc5-49e0-aa3c-bc6e63238635","keyword":"null","originalKeyword":"null"},{"id":"caa017a2-9265-43db-95a8-c75393f377e3","keyword":"null","originalKeyword":"null"},{"id":"b4391c88-2a88-44ac-935d-d09fd7424711","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1995_3_12","title":"CRYSTALLIZATION OF Fe_(38)Ni_(39)Si_(10)B_(13) METALLIC GLASS UNDER HELIUM ION IRRADIATION","volume":"8","year":"1995"}],"totalpage":1,"totalrecord":7}