{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"运用X射线衍射仪对两种铜药型罩材料进行了织构测量和分析,研究不同的加工工艺对铜药型罩材料的显微组织及织构的影响,结果表明:B罩晶粒细小,具有均匀弱织构,各向同性好,而A罩织构较强,呈现明显的各向异性,A、B两罩沿母线方向的各向异性程度均大于沿周向的,且罩底各向异性程度最大,罩底的织构沿周向A的差别大,B的差别小;A、B两罩罩体上下部分织构差别依次减弱,即A罩差别较大,B罩罩底和罩顶织构相差最小.靶试结果表明,B罩具有高的性能.","authors":[{"authorName":"张全孝","id":"8dab349f-d406-4963-b2fa-9218a4de51ba","originalAuthorName":"张全孝"},{"authorName":"张新明","id":"fa65d2c0-432c-4cd3-ad24-375bee3544c2","originalAuthorName":"张新明"},{"authorName":"贾万明","id":"71c32f39-1e0c-4918-8463-0e1b8c60483d","originalAuthorName":"贾万明"},{"authorName":"史利军","id":"ab00039f-cc06-42ff-aae8-0455232c92b1","originalAuthorName":"史利军"}],"doi":"10.3969/j.issn.1004-244X.2005.04.002","fpage":"4","id":"de930945-9c44-44c6-928b-b8875084828e","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"3f23586e-56fc-42a5-9f08-233e810b259d","keyword":"药型罩","originalKeyword":"药型罩"},{"id":"1f232a40-ade7-4618-98cb-40bc8c280133","keyword":"织构","originalKeyword":"织构"},{"id":"06d3ee29-1d03-4d1c-bc2a-2e423eaaaabb","keyword":"各向同性","originalKeyword":"各向同性"},{"id":"e00c1175-0d70-42b7-98d3-26ce11dfb0fd","keyword":"各向异性","originalKeyword":"各向异性"},{"id":"7a536133-b880-4617-8d71-1d19ecbe9f8c","keyword":"性能","originalKeyword":"破甲性能"}],"language":"zh","publisherId":"bqclkxygc200504002","title":"高性能精密铜药型罩材料的织构研究","volume":"28","year":"2005"},{"abstractinfo":"为研究粉末药型罩的材料配比及药型罩径向壁厚差、轴向壁厚变化率、药型罩质量分布对性能的影响,采用正交法以穿深为指标设计实验方案,通过静试验得到各因素最优组合.研究结果表明,药型罩材料配比、径向壁厚差、轴向质量分布对弹的威力具有重要影响,其中材料配比是影响药型罩性能最主要的因素,对侵彻威力具有决定性作用.","authors":[{"authorName":"陈星","id":"9566937f-daee-4e2a-a940-033858ea0b38","originalAuthorName":"陈星"},{"authorName":"王凤英","id":"81a53fa2-3a7e-462e-8ca6-876ed77fd928","originalAuthorName":"王凤英"}],"doi":"","fpage":"94","id":"a10a7b5e-c8c5-4fc3-a30e-fc869652520a","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"3ad4267a-4dda-4a00-9362-1fbc6f5aa040","keyword":"聚能装药","originalKeyword":"聚能装药"},{"id":"d6181789-042a-4017-a4ec-9c331502261c","keyword":"粉末药型罩","originalKeyword":"粉末药型罩"},{"id":"0c7d118e-16b7-4384-918c-9261ac2adc4a","keyword":"材料配比","originalKeyword":"材料配比"},{"id":"ac6d1dff-f235-477d-8809-efbd4276c1f0","keyword":"壁厚差","originalKeyword":"壁厚差"},{"id":"cffdb8c2-e8d4-4296-bc9a-d6e0da3df071","keyword":"质量分布","originalKeyword":"质量分布"}],"language":"zh","publisherId":"bqclkxygc201504024","title":"粉末药形罩材料及工艺对静性能影响的研究","volume":"38","year":"2015"},{"abstractinfo":"为了研究W-Ni-Fe合金药型罩的射流特征及特性,对W-Ni-Fe合金药型罩进行静试验,采用X射线照相系统研究W-Ni-Fe合金药型罩的射流形成能力,并对侵彻后的靶板进行宏观及微观分析.结果表明,W-Ni-Fe合金药型罩能形成高速延性射流,虽然穿深较低但孔孔径大.靶板微观分析表明,孔表面射流残余多且形成了高硬马氏体区.XRD结果表明,射流与钢靶相互作用剧烈,在破孔表面形成了大量Fe0.95W0.05化合物.马氏体及化合物硬质相的存在使得射流能量横向耗散严重,这是造成W-Ni-Fe合金药型罩穿深低、孔大的主要原因.","authors":[{"authorName":"吕翠翠","id":"f97f581b-0445-485e-8ffa-f07cdee58d25","originalAuthorName":"吕翠翠"},{"authorName":"刘金旭","id":"e11430e7-9149-4974-9439-68a51b338567","originalAuthorName":"刘金旭"},{"authorName":"李树奎","id":"fa6f34df-37f1-4bb0-92bc-15af2e4fa269","originalAuthorName":"李树奎"},{"authorName":"郭文启","id":"ee0245d2-2d00-4167-a914-ffbd4fe2e33e","originalAuthorName":"郭文启"},{"authorName":"白曦","id":"042b0df4-590b-4cb5-a223-9e35dc65cfbb","originalAuthorName":"白曦"}],"doi":"","fpage":"2337","id":"319bf63e-f7fc-403a-8c56-b90d4559322a","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"97482b26-f636-475d-ba59-e501f12218b8","keyword":"钨合金","originalKeyword":"钨合金"},{"id":"a64c1367-732d-4ff7-a430-3009cc2e4ab0","keyword":"药型罩","originalKeyword":"药型罩"},{"id":"6cbfa9c7-0b8b-41f9-824f-1d42cd9ace04","keyword":"射流","originalKeyword":"射流"},{"id":"e4b1d3d1-2b39-4e4d-9d25-3a4634b402ab","keyword":"特性","originalKeyword":"破甲特性"},{"id":"9e5c57e1-7aae-4f8c-8842-bfbc494f91ee","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"xyjsclygc201311028","title":"W-Ni-Fe合金药型罩的特性","volume":"42","year":"2013"},{"abstractinfo":"为研究不同结构药型罩形成EFP对目标的侵彻效果,设计3种可形成复合EFP的复合药型罩装药结构,即内罩为铜、外罩为钨以及内罩为钨、外罩为铜的复合药型罩,以及爆炸压实W-Cu纳米合金药型罩,并对比分析了三者的优缺点.通过数值模拟复合EFP的形成和对比分析透靶毁伤效果.结果表明:与钨外铜内药型罩相比,钨内铜外药型罩形成的EFP侵彻效果更好,但二者由于墩粗现象,均不如W-Cu纳米合金药型罩侵彻更加稳定.合理调整药型罩材料有助于改善EFP性能,在工程上有一定的指导意义.","authors":[{"authorName":"刘麒峰","id":"c58a0c71-8de9-42bb-8036-4664a2f269a1","originalAuthorName":"刘麒峰"},{"authorName":"赵捍东","id":"af5f8d00-a166-44bd-aced-a77d25138056","originalAuthorName":"赵捍东"},{"authorName":"王金虎","id":"64cacd6f-a545-4f10-84ec-7412c893f4a0","originalAuthorName":"王金虎"}],"doi":"","fpage":"102","id":"c09e7680-7411-4de6-8f01-7631662d6129","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"0b3a5df6-fd9f-4779-b69b-4a5f21f1c164","keyword":"复合药型罩","originalKeyword":"复合药型罩"},{"id":"a4dd2923-d233-4dff-87b8-79e30df745ef","keyword":"W-Cu合金","originalKeyword":"W-Cu合金"},{"id":"4426c396-8432-4e6f-aee6-7d99aff273f9","keyword":"EFP","originalKeyword":"EFP"},{"id":"cc6d1ad9-a94e-4430-a21b-2487699dc41c","keyword":"毁伤效果","originalKeyword":"毁伤效果"}],"language":"zh","publisherId":"bqclkxygc201506028","title":"W-Cu复合药型罩EFP的形成及其聚能效应研究","volume":"38","year":"2015"},{"abstractinfo":"","authors":[{"authorName":"张全孝","id":"a32aa227-7724-4483-b392-3c1728047e59","originalAuthorName":"张全孝"},{"authorName":"高云","id":"753668e2-1216-40c1-8063-9117bf8af23d","originalAuthorName":"高云"},{"authorName":"郝勇波","id":"ea414ec7-b778-4065-ac82-6dbd940cefbc","originalAuthorName":"郝勇波"}],"doi":"10.3969/j.issn.1004-244X.1999.01.009","fpage":"38","id":"ba0951ca-da06-4630-85de-277526f90f71","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"a61c10a8-79f1-4f36-8ad4-f70765e1220c","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"bqclkxygc199901009","title":"变形工艺对铜药型罩材料性能的影响","volume":"22","year":"1999"},{"abstractinfo":"","authors":[],"doi":"","fpage":"48","id":"be27240b-7af8-4eba-834d-23533a103d69","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"5c6b35e1-c7ef-4a1e-a5de-3aed742a70d6","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"bqclkxygc200102021","title":"抗弹的装甲","volume":"24","year":"2001"},{"abstractinfo":"爆炸成形侵彻体(EFP)战斗部是应用最广的弹战斗部之一. 弹采用EFP战斗部时, 要求药型罩材料必须有好的动态延展性和一定的抗拉强度. 钽具有延展性好、密度大的特点, 是一种有前景的弹药型罩材料, 其侵彻性能较传统的铜药型罩材料有很大的提高. 钽及钽合金药型罩(球缺形)的加工方法主要有三种: 机械加工成形、板材冲压成形和摆动碾压成形. 本文介绍了钽及钽合金药型罩材料与加工工艺的研究现状.","authors":[{"authorName":"彭海健","id":"8714e70e-9083-4263-95a9-6e441b55135b","originalAuthorName":"彭海健"},{"authorName":"闫晓东","id":"68c569a2-097d-461f-9b3a-a6fbf9dc057e","originalAuthorName":"闫晓东"},{"authorName":"李德富","id":"6e3db7f1-6b93-4b84-b4cd-6e5d504d847d","originalAuthorName":"李德富"}],"doi":"10.3969/j.issn.0258-7076.2006.05.022","fpage":"678","id":"4ebb42f7-78c0-492a-b992-a0a5cbc104af","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"4cf0dac5-7e7e-4640-bff9-bd7240c39c6e","keyword":"钽","originalKeyword":"钽"},{"id":"d97ac8fc-eb1e-492d-bfd4-512f43f9cbd6","keyword":"钽合金","originalKeyword":"钽合金"},{"id":"a4092357-1d99-40ef-8525-d2f207ea7b25","keyword":"爆炸成形侵彻体","originalKeyword":"爆炸成形侵彻体"},{"id":"3237c783-a361-4b23-bd14-5a22e1e6b3ca","keyword":"药型罩材料","originalKeyword":"药型罩材料"}],"language":"zh","publisherId":"xyjs200605022","title":"钽在破弹药型罩中的应用","volume":"30","year":"2006"},{"abstractinfo":"基于膜法乳技术的研究进展,选择了水+正丁醇、水+煤油以及水+煤油+30%TBP(磷酸三丁酯)多种体系,研究了影响乳效果的重要参数透过压、体系性质和膜孔径等对透过液通量和透过液水相含油量的影响.实验结果表明,膜法乳是一种很有效的乳技术,对于不同体系的乳液均有较好的通用性.膜法乳过程受透过压和膜孔的影响较大,随着透过压的增加,透过液通量增加,透过液中水相的油含量也随之增加.膜孔径的增大有利于透过液通量的提高,当然在相同的透过压作用下透过液水相的含油量也会随之增加,但控制较低的透过压时,水中的油含量可以得到较好地控制.","authors":[{"authorName":"骆广生","id":"8eca7601-920a-4336-9ddc-5662c4a956e3","originalAuthorName":"骆广生"},{"authorName":"邹财松","id":"b6510f8e-7561-490c-9f32-a84881485b6c","originalAuthorName":"邹财松"},{"authorName":"孙永","id":"1d2966fa-6519-4a83-9359-ff0ed27867a4","originalAuthorName":"孙永"},{"authorName":"戴猷元","id":"ca0d6b38-b25e-4ca4-99ef-cf144473157e","originalAuthorName":"戴猷元"}],"doi":"10.3969/j.issn.1007-8924.2001.02.014","fpage":"62","id":"10ddf056-ab34-4559-8fa0-8e57adffb025","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"33b63539-62a6-42eb-ba62-b23c0074ad97","keyword":"乳液","originalKeyword":"乳液"},{"id":"861b425d-724d-4297-8804-ef492c329e3c","keyword":"乳","originalKeyword":"破乳"},{"id":"bfe79e32-7956-4477-91d3-64186c807823","keyword":"微滤膜","originalKeyword":"微滤膜"}],"language":"zh","publisherId":"mkxyjs200102014","title":"微滤膜乳技术的研究","volume":"21","year":"2001"},{"abstractinfo":"对具有核壳结构的聚(甲基丙烯酸酯/苯乙烯/交联剂双烯A)/聚苯乙烯(P(MMA/St/BPADA)/PS)乳液在电解质作用下的乳规律进行了研究. 采用分光光度计,研究了乳液浓度与透过率以及乳液的透过率与电解质浓度间的线性关系,确定了核壳乳液在电解质作用下的乳过程分为以下3个过程:乳液稳定的过程;乳液不完全乳发生聚集的过程;乳液完全乳生成絮凝物的过程.","authors":[{"authorName":"顾强","id":"26dc7cf9-3e7b-45bc-aaeb-26329a6e4f24","originalAuthorName":"顾强"},{"authorName":"张恺","id":"a2839612-73fe-47c2-a002-6164c03dd23b","originalAuthorName":"张恺"},{"authorName":"胡春玲","id":"c952e75e-5670-4916-8795-4a9728d9c384","originalAuthorName":"胡春玲"},{"authorName":"杨柏","id":"82d41bd8-c4e5-4cc9-b011-3c7547dd8d52","originalAuthorName":"杨柏"}],"doi":"10.3969/j.issn.1000-0518.2006.02.002","fpage":"122","id":"affbfd19-e06c-40af-a9dd-981da1213d13","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"74fb4346-866a-4d52-86e8-c031c944d32c","keyword":"分光光度计","originalKeyword":"分光光度计"},{"id":"49350c10-11f3-4fcb-a1f0-e13596a630d6","keyword":"核壳乳液","originalKeyword":"核壳乳液"},{"id":"d07b7a72-dbf5-46ca-bfa7-2adc663905b6","keyword":"电解质","originalKeyword":"电解质"},{"id":"9f36e8fa-5898-4acc-92fe-588308c22651","keyword":"乳液乳","originalKeyword":"乳液破乳"}],"language":"zh","publisherId":"yyhx200602002","title":"核壳乳液在电解质作用下的乳过程","volume":"23","year":"2006"},{"abstractinfo":"通过Ullmann反应合成了4-氧基三苯胺(MeO-TPA)和4,4'.二氧基三苯胺(DMeO-TPA)两种具有良好溶解性的氧基取代三苯胺,通过FFIR、'H NMR和元素分析等手段对其进行了表征,并采用循环伏安(CV)结合UV-Vis吸收光谱测试了其能级结构.以氧基取代三苯胺为电荷传输材料,TiOPc为电荷产生材料制备了双层光电导体,测试了其光敏性.结果表明MeO-TPA和DMeO-TPA具有较三苯胺(TPA)更为优良的空穴传输性能.","authors":[{"authorName":"徐清","id":"682b14aa-cdd0-4251-90d9-3ea085ad331c","originalAuthorName":"徐清"},{"authorName":"陈红征","id":"b673e094-aee2-4393-bfc5-d9dbe5e5e76e","originalAuthorName":"陈红征"},{"authorName":"施敏敏","id":"758381e3-43dc-4258-9d7d-e0c9e91295b2","originalAuthorName":"施敏敏"},{"authorName":"汪茫","id":"af96e53a-4f47-4f74-a2b0-55f175734216","originalAuthorName":"汪茫"}],"doi":"10.3969/j.issn.1673-2812.2007.02.007","fpage":"190","id":"65c4ad43-4bd1-4fd0-a424-8f4d54b94975","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7a14bd1e-5a7b-4ce6-81f7-cc299bb6f07e","keyword":"三苯胺","originalKeyword":"三苯胺"},{"id":"5abe6e66-00fe-4083-8ab4-d5f5cbdbafc8","keyword":"氧基","originalKeyword":"甲氧基"},{"id":"fb9e238f-0583-471c-b0aa-2b8e46f99f96","keyword":"合成","originalKeyword":"合成"},{"id":"c5f22bb9-ef35-49cc-b8fa-b076f684b96d","keyword":"空穴传输材料","originalKeyword":"空穴传输材料"},{"id":"565cb91f-cf88-4fa8-82e3-6e4385b4701e","keyword":"有机光电导体","originalKeyword":"有机光电导体"}],"language":"zh","publisherId":"clkxygc200702007","title":"氧基取代三苯胺的合成及其性能研究","volume":"25","year":"2007"}],"totalpage":8876,"totalrecord":88758}