{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用超音速火焰喷涂在Ti6Al4V合金表面制备WC-12Co涂层,用扫描电子显微镜(SEM)、X射线衍射(XRD)、能谱(EDS)对涂层的组织形貌、物相结构、成分进行试验分析.结果表明:涂层中无层状分布,涂层整体致密,孔隙率低,与基体结合良好 ;涂层中呈团聚状的粒子与粒子之间结合紧密,颗粒为弥散分布.这是因为超音速粒子的速度高能弥补堆垛不规则造成的孔隙,降低孔隙率,提高致密度 ;高速粒子变形充分,利于提高活性区域的面积,利于粒子与基体、粒子与涂层的结合.涂层中组成相除WC外,有少量Co3W3C和微量的W2C,未见金属Co,Co在涂层中变成非晶态.分析认为:W2C的产生是在喷涂过程中由于WC热分解,脱碳而生成的产物 ;Co3W3C是Co和WC在有氧环境下的反应产物,Co3W3C含量少是由于粉末在燃烧室中停留时间短.","authors":[{"authorName":"姬寿长","id":"33105363-8f0d-4c40-b5f8-939d3df7f7d3","originalAuthorName":"姬寿长"},{"authorName":"李争显","id":"d9ac176d-d50b-456f-9f5e-d36fa1c43436","originalAuthorName":"李争显"},{"authorName":"杜继红","id":"57ca66e1-3d25-4974-b438-60b4d9531ef7","originalAuthorName":"杜继红"},{"authorName":"查柏林","id":"3ee18952-cc1c-46f6-a9a9-56733c6007d2","originalAuthorName":"查柏林"},{"authorName":"黄春良","id":"dff6c18e-d051-4f15-a080-4f226b59c405","originalAuthorName":"黄春良"},{"authorName":"王宝云","id":"36e16ec0-def1-43d2-b885-9e393908c764","originalAuthorName":"王宝云"},{"authorName":"罗小峰","id":"b635de1a-9ef2-469f-a5e7-9ab9fd4da5e7","originalAuthorName":"罗小峰"},{"authorName":"华云峰","id":"d9611d63-2d93-420a-909f-daf3c2175619","originalAuthorName":"华云峰"},{"authorName":"王彦锋","id":"c57a17df-8952-4636-bc0e-78535cdeba9f","originalAuthorName":"王彦锋"}],"doi":"","fpage":"2005","id":"c409af0b-eaa1-4eb0-8188-bce885d04c9d","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3b4bd363-c0e1-4fa3-a797-9c0314b50bc0","keyword":"超音速火焰喷涂(HVOF)","originalKeyword":"超音速火焰喷涂(HVOF)"},{"id":"7f3d6e16-b8b5-49d6-8e03-27bfdd07af6a","keyword":"涂层","originalKeyword":"涂层"},{"id":"d28c98d6-61bd-4860-ac00-dc21cde79212","keyword":"组织","originalKeyword":"组织"},{"id":"3ce881bb-4610-4e43-bb04-ccd10aa52f06","keyword":"相组成","originalKeyword":"相组成"},{"id":"4e773c7d-ad97-4a70-bd8c-6e1773837e56","keyword":"W2C","originalKeyword":"W2C"},{"id":"2715196c-0457-4bb4-a4e4-7362cebb69d5","keyword":"WC热分解","originalKeyword":"WC热分解"},{"id":"b6adca37-2d25-45e1-9850-131e697d1104","keyword":"Co3W3C","originalKeyword":"Co3W3C"}],"language":"zh","publisherId":"xyjsclygc201211026","title":"Ti6Al4V合金表面超音速火焰喷涂WC-12Co涂层组织及相分析","volume":"41","year":"2012"},{"abstractinfo":"The alloying effect of 3d transition metal elements on the lattice constants and their site preferences in gamma'-Co(3)(Al, W) are systematically studied based on a supercell model. The lattice constant of the gamma' phase is modified by the addition of 3d transition metal elements, and it increases in the order of Fe < Ni < Mn < Cr < V < Ti. Four types of site preference are identified for these 3d elements in gamma' phase by analyzing the binding energy and the impurity formation energy. Ni, Fe, V, and Ti are recognized to stabilize the gamma' phase. Their distinct alloying effect is further revealed by investigating the impurity-induced charge density difference and the partial density of states. These results are in agreement with the experimental data ever reported. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3319650]","authors":[],"categoryName":"|","doi":"","fpage":"","id":"f1dd0275-cbb0-498a-a9af-261d9299ec98","issue":"9","journal":{"abbrevTitle":"JOAP","id":"7dcf8a89-0513-40ee-be2d-759941dcef7e","issnPpub":"0021-8979","publisherId":"JOAP","title":"Journal of Applied Physics"},"keywords":[{"id":"a8b3c2a0-5d65-4cff-9faf-fd54e8f967e5","keyword":"augmented-wave method;co-base superalloy;electronic-structure;site;preference;ni3al;phase;temperature;stability;magnetism;alloys","originalKeyword":"augmented-wave method;co-base superalloy;electronic-structure;site;preference;ni3al;phase;temperature;stability;magnetism;alloys"}],"language":"en","publisherId":"0021-8979_2010_9_4","title":"First-principle investigation of 3d transition metal elements in gamma '-Co(3)(Al, W)","volume":"107","year":"2010"},{"abstractinfo":"热压烧结制备了Al2O3/Cr3C2/(W,Ti)C复合陶瓷材料,对其抗弯强度及组织形貌进行了研究,分析了Cr3C2与(W,Ti)C对抗弯强度的影响.结果表明:添加(W,Ti)C与Cr3C2有利于阻止晶界迁移,延缓晶粒长大,提高材料强度,但每一相的添加量以10%内为宜,两者添加总量在20%左右时Al2O3/Cr3C2/(W,Ti)C复合材料抗弯强度较佳.铬、钨、钛离子在Al2O3基体晶粒中的固溶起强化作用,网状结构是降低材料抗弯强度的重要原因.","authors":[{"authorName":"孙德明","id":"c48ffb68-c312-487f-9099-0ecc969c8b89","originalAuthorName":"孙德明"},{"authorName":"刘立红","id":"7a0dde23-000c-44d9-86c1-36266e70ea5a","originalAuthorName":"刘立红"},{"authorName":"许崇海","id":"f8997f8e-e476-49fa-9aaf-52ab6c6e829f","originalAuthorName":"许崇海"},{"authorName":"刘玉婷","id":"bd3650fe-15b2-4e89-bfb6-946864532aee","originalAuthorName":"刘玉婷"},{"authorName":"鹿晓阳","id":"8e9a8278-fc95-4a3c-8fc5-5627963ce975","originalAuthorName":"鹿晓阳"},{"authorName":"赵国群","id":"6b41c45a-cb0d-426e-9c22-26719b58202f","originalAuthorName":"赵国群"}],"doi":"10.3969/j.issn.1000-3738.2005.08.015","fpage":"43","id":"206b31c5-22b9-40c4-a44d-652032551b00","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"72d5d8a4-ab09-4782-8cfa-d51440571b4e","keyword":"Cr3C2","originalKeyword":"Cr3C2"},{"id":"ce706a3f-87bc-4d3d-87e7-8fd06f817dc8","keyword":"(W,Ti)C","originalKeyword":"(W,Ti)C"},{"id":"3ffbb89c-b2ee-4533-afe0-8993dbee730e","keyword":"Al2O3陶瓷","originalKeyword":"Al2O3陶瓷"},{"id":"dcc20cf6-43d8-47c3-9adf-d52f3874ddb8","keyword":"抗弯强度","originalKeyword":"抗弯强度"}],"language":"zh","publisherId":"jxgccl200508015","title":"Al2 O3/Cr3C2/(W,Ti)C陶瓷抗弯强度的研究","volume":"29","year":"2005"},{"abstractinfo":"采用基于密度函数理论的缀加平面波加局域轨道方法和超晶胞方法对L12结构Co3(Ge,W)析出相的电子结构以及弹性常数进行了理论计算,研究了Co3(Ge,W)析出相的弹性性质.Co3(Ge,W)析出相的杨氏模量和剪切模量通过Voigt-Reuss-Hill方法计算得到.弹性性质的计算结果表明,L12结构CO3(Ge,W)析出相的剪切模量较Co基体高且能对Co基体起到强化作用,指出Co3(Ge,W)析出相在本质上是一种韧性化合物.","authors":[{"authorName":"姚强","id":"29aad0d9-83f5-4ad6-9838-6ea2673e1598","originalAuthorName":"姚强"}],"doi":"","fpage":"233","id":"e63f512c-c473-412b-a271-f3951c50f849","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"af34ca6d-e079-432d-a441-60670c2cddc7","keyword":"Co基合金","originalKeyword":"Co基合金"},{"id":"4674a87c-f2f6-4cd0-9619-8b06a6aa356d","keyword":"弹性性质","originalKeyword":"弹性性质"},{"id":"5f7788c9-739d-443c-a9f4-cbb00f97913d","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"f15aa29f-4ba8-44ef-9691-298009c387ab","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"cldb2010z1068","title":"Co3(Ge,W)析出相弹性性质第一性原理研究","volume":"24","year":"2010"},{"abstractinfo":"热压烧结制备了Al2O3/Cr3C2/(W,Ti)C复合陶瓷材料(以下简称ACW复合材料),对其Vickers硬度及组织形貌进行了研究,分析了Cr3C2及(W,Ti)C对Vickers硬度的影响.结果表明,(W,Ti)C和Cr3C2的添加利于阻止晶界迁移,抑制晶粒长大,Cr、W、Ti离子在Al2O3基体晶粒中的固溶起强化作用.每一相的添加量在10%~20%(体积分数,下同)为宜,添加总量在30%左右ACW复合材料硬度最佳.","authors":[{"authorName":"孙德明","id":"1f12442c-d392-4913-b760-38d6e9b0445a","originalAuthorName":"孙德明"},{"authorName":"鹿晓阳","id":"a5ac58bd-5933-472e-8a5b-2dc46c7851ec","originalAuthorName":"鹿晓阳"},{"authorName":"李成美","id":"becef460-7c1f-41a4-ac91-408cd1281004","originalAuthorName":"李成美"},{"authorName":"薛仲舜","id":"4004cea2-b322-4231-a8be-3f86ee58094f","originalAuthorName":"薛仲舜"},{"authorName":"陈怀明","id":"020c6c98-fad3-4280-9e59-9771a1c95d66","originalAuthorName":"陈怀明"},{"authorName":"岳雪涛","id":"50e50caf-ce2f-4f6f-bfbc-fffeec4f8cbc","originalAuthorName":"岳雪涛"},{"authorName":"孙胜","id":"6a664a96-dd4a-435b-be8a-05921fb6e0a0","originalAuthorName":"孙胜"}],"doi":"10.3969/j.issn.1001-4381.2005.11.005","fpage":"16","id":"942a4917-1b25-4e86-a9f2-1aef62fa300a","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"349c1ea8-3d02-437b-91a4-dc1bd30d8dd6","keyword":"Vickers硬度","originalKeyword":"Vickers硬度"},{"id":"66bf2978-18b0-4bdd-9ea5-6979485ee2db","keyword":"Al2O3陶瓷","originalKeyword":"Al2O3陶瓷"},{"id":"bc68d16e-34ee-4c46-80a7-9d94da929d68","keyword":"Cr3C2","originalKeyword":"Cr3C2"},{"id":"8645ea66-e8aa-4435-8b51-ea3bdb3dfaa3","keyword":"(W,Ti)C","originalKeyword":"(W,Ti)C"},{"id":"457a30f3-f4f7-416d-8710-d9aea58309af","keyword":"热压烧结","originalKeyword":"热压烧结"}],"language":"zh","publisherId":"clgc200511005","title":"Cr3C2及(W,Ti)C对Al2O3/Cr3 C2/(W,Ti)C复合陶瓷材料Vickers硬度的影响","volume":"","year":"2005"},{"abstractinfo":"将50keV碳离子注入纯Co金属膜中,在剂量为2.5×10~(17)/cm~2时,发现了六方结构碳化物。电子衍射结果表明晶格常数a=0.2685nm,c=0.4335nm。当剂量提高到5×10~(17)/cm~2时,六方衍射环仍然存在。而剂量提高到9×10~(17)/cm~2时,衍射环变成具有非晶特征的漫散晕。Auger谱数据表明,形成的六方相成份范围为Co_2-_3C。本文从固体Fermi能来解释Fe,Co和Ni的六方碳化物形成的变化;从能带理论解释热处理方法形成正交Co碳化物的原因。","authors":[{"authorName":"王坚","id":"99c85c53-2345-497b-b82c-614ec1ca0b04","originalAuthorName":"王坚"},{"authorName":"吴杏芳","id":"16353ac6-2edb-455f-9568-5137f12a0f1e","originalAuthorName":"吴杏芳"},{"authorName":"陈训平","id":"ad22cd8e-c2f7-464e-af55-3c8fc92afc52","originalAuthorName":"陈训平"},{"authorName":"蔡军","id":"cc653e1a-6598-4b81-afa6-3f94de8ece8d","originalAuthorName":"蔡军"},{"authorName":"柳百新","id":"205b7841-8801-4764-8920-e3cc14e3ebc3","originalAuthorName":"柳百新"},{"authorName":"方正知","id":"5a7f8ed2-4617-461a-a638-e46674978225","originalAuthorName":"方正知"}],"categoryName":"|","doi":"","fpage":"70","id":"6e0c08ed-e4b5-4746-ad61-cb202b10acb0","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b13c13e0-6d07-46e3-80e3-90b0958b6709","keyword":"离子注入","originalKeyword":"离子注入"},{"id":"53b6388d-0232-43b8-aae0-3270c05e53a0","keyword":"Co carbide;Fermi energy","originalKeyword":"Co carbide;Fermi energy"},{"id":"dd5566f1-3115-4098-b4f3-e160042fc91b","keyword":"band theory","originalKeyword":"band theory"}],"language":"zh","publisherId":"0412-1961_1991_5_25","title":"六方Co_(2-3)C的形成","volume":"27","year":"1991"},{"abstractinfo":"利用X-ray衍射和失重法研究了CO/CO2混合气体还原氧化铁过程中Fe3C的生成规律,得到3Fe+2CO=Fe3C+CO2的反应标准自由能表达式为:△G°= -151 470+168.78T,绘制了碳化铁生成热力学平衡图,与实验结果基本吻合.","authors":[{"authorName":"张殿伟","id":"2e15f58c-9afc-40bb-ac72-31cb8ae9c46d","originalAuthorName":"张殿伟"},{"authorName":"郭培民","id":"113e1431-dc08-4680-b2a0-29d8125298cb","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"e34fb308-9d00-4253-bc49-085686956f8d","originalAuthorName":"赵沛"}],"doi":"10.3969/j.issn.1001-1447.2007.01.006","fpage":"20","id":"8db60420-67e5-47c0-acd7-9c46b9d492ff","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"8212d1e2-b972-40da-8bf9-c722ee70b59e","keyword":"Fe3C","originalKeyword":"Fe3C"},{"id":"30a95d09-17b5-46e9-a6f7-088df6b3867c","keyword":"生成热力学","originalKeyword":"生成热力学"},{"id":"395a35de-3e73-4a18-8dc3-9d9218ec5112","keyword":"气氛","originalKeyword":"气氛"}],"language":"zh","publisherId":"gtyj200701006","title":"CO/CO2气氛对Fe3C形成的影响规律","volume":"35","year":"2007"},{"abstractinfo":"基于密度泛函理论,采用第一性原理赝势平面波方法计算了不同压力下L12-Co3(Al,W)化合物的弹性性质与电子结构.计算得到零压力下的点阵常数a0与实验值和理论值相符,计算结果表明:在0~45 GPa压力范围内,L12-Co3(Al,W)化合物的弹性常数Cq (CH、C12、C44)与压力满足三阶多项式关系,体模量B、剪切模量G、本征塑性、断裂韧性随压力的增强而增加;通过引入总化学键重叠布局数,定量的计算了金属间化合物的共价键性能,结果显示压力的增加会不断增强L12-Co3(Al,W)化合物中的共价键强度;电荷差分密度分析表明,随着压力的增加,W原子得到电子,A1原子失去电子,Co-Co、Co-W原子间电荷密度明显增强,表现出更强的键合作用.","authors":[{"authorName":"姚传生","id":"68198351-2f7d-4c97-b3da-776631f8720f","originalAuthorName":"姚传生"},{"authorName":"陈铮","id":"fe5e9f90-8096-4a56-8fc7-ecebecf0dc52","originalAuthorName":"陈铮"},{"authorName":"杜秀娟","id":"213d27b9-41e3-4d8c-b112-f1e7772f340e","originalAuthorName":"杜秀娟"}],"doi":"","fpage":"457","id":"26a016c6-5a6c-441f-a8d5-ad6c7c7f61cb","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"8a34abb8-c483-4476-ae2f-dd8905acd3af","keyword":"密度泛函理论","originalKeyword":"密度泛函理论"},{"id":"dbdc7584-7ad4-4fc1-834b-ef7aa93bd22c","keyword":"弹性性能","originalKeyword":"弹性性能"},{"id":"2510d509-3549-4c26-83a3-d8267352a2f3","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"5c616988-f890-4aa2-9037-4a632845ffdf","keyword":"压力","originalKeyword":"压力"},{"id":"1b909784-88b0-4721-aec2-186a3bf7a89c","keyword":"L12-Co3(Al,W)化合物","originalKeyword":"L12-Co3(Al,W)化合物"}],"language":"zh","publisherId":"xyjsclygc201502039","title":"压力对L12-Co3(Al,W)化合物弹性性能与电子结构的影响","volume":"44","year":"2015"},{"abstractinfo":"The ideal strengths of L1(2)Co(3)(Al,W) in comparison with Ni(3)Al are investigated using the first-principles method. Results for the stress-strain relationships, ideal tensile and shear strengths are presented. The calculated elastic properties agree well with the experimental observations. Co(3)(Al,W) is found to have larger moduli and higher strengths, but less ductile than Ni(3)Al. The electronic structures indicate the directional covalentlike Co-W bonding through d-d hybridization is the origin of excellent mechanical properties of Co(3)(Al,W).","authors":[],"categoryName":"|","doi":"","fpage":"","id":"df75571f-a5e2-4757-b615-c4dbdce1e5ba","issue":"26","journal":{"abbrevTitle":"APL","id":"5e3c428a-be96-46d5-bcb9-94a4fce832b0","issnPpub":"0003-6951","publisherId":"APL","title":"Applied Physics Letters"},"keywords":[{"id":"df2267e8-0874-4ca5-aaa5-e5f0d8856cce","keyword":"ab initio calculations;aluminium alloys;cobalt alloys;ductility;elastic moduli;electronic structure;nickel alloys;shear strength;stress-strain relations;tungsten alloys;w-base alloys","originalKeyword":"ab initio calculations;aluminium alloys;cobalt alloys;ductility;elastic moduli;electronic structure;nickel alloys;shear strength;stress-strain relations;tungsten alloys;w-base alloys"}],"language":"en","publisherId":"0003-6951_2009_26_2","title":"A comparison of the ideal strength between L1(2)Co(3)(Al,W) and Ni(3)Al under tension and shear from first-principles calculations","volume":"94","year":"2009"},{"abstractinfo":"应用热力学原理计算分析了Al2O3/Cr3C2/(W,Ti)C复合陶瓷材料体系中各组分间化学反应的可能性.结果表明,在1800℃范围内各组分间不会发生化学反应.并通过Al2O3/Cr3C2/(W,Ti)C复合陶瓷材料的热压烧结制备进行了实验验证.","authors":[{"authorName":"孙德明","id":"ebbcfd6e-df0f-4ec5-9b8f-d0a49fd3388b","originalAuthorName":"孙德明"},{"authorName":"张勤河","id":"44c92240-b1f4-4fa3-86af-5f5c6755b8d0","originalAuthorName":"张勤河"},{"authorName":"柴琦","id":"bd8a1765-250b-4e73-b78c-4e37f1485d51","originalAuthorName":"柴琦"},{"authorName":"张明勤","id":"15789591-84f2-4317-8fbd-a0bef1189340","originalAuthorName":"张明勤"},{"authorName":"许崇海","id":"56fcaf51-3656-4491-85b7-824240119322","originalAuthorName":"许崇海"}],"doi":"10.3969/j.issn.1001-4381.2007.09.013","fpage":"55","id":"c533de13-9998-4b1c-b912-7befe5e4cc3a","issue":"9","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"af3ce5e2-bc1a-46e1-a70b-e8a6d3e39391","keyword":"化学相容性","originalKeyword":"化学相容性"},{"id":"f3589445-49ff-4adf-871d-471d48e7e67d","keyword":"Al2O3","originalKeyword":"Al2O3"},{"id":"46ba3c7d-3c95-4462-89c6-0148540a1323","keyword":"Cr3C2","originalKeyword":"Cr3C2"},{"id":"deced57f-9d35-4e89-9a0b-0ff6819eaa27","keyword":"(W,Ti)C","originalKeyword":"(W,Ti)C"},{"id":"314aca0a-f3db-48a2-8afa-a75999b814fd","keyword":"热压","originalKeyword":"热压"}],"language":"zh","publisherId":"clgc200709013","title":"Al2O3/Cr3C2/(W,Ti)C复合材料化学相容性分析","volume":"","year":"2007"}],"totalpage":8344,"totalrecord":83433}