{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"纳米流体运动特性和颗粒参数的测量对纳米流体换热效率的研究具有重要意义。本文将激光自混频技术应用于纳米流体测量中,给出了自混频信号功率密度函数的表达式并实验研究其变化规律。研究结果表明,功率密度展宽具有佛克脱函数的形式。激光垂直入射流动样品池时,功率密度得到展宽,展宽程度随着定向流速的增大或束腰半径的减小而增大。激光倾斜入射流动样品池时,功率密度在展宽的同时还伴随多普勒峰移,其位置随着定向流速的增大或散射矢量与定向流速之夹角的减小而迁移至高频。","authors":[{"authorName":"王华睿","id":"aed06ad5-bf6d-441e-b402-aad512a957ac","originalAuthorName":"王华睿"},{"authorName":"沈建琪","id":"c4287c1d-e3d7-4d40-b126-2093e70f6a60","originalAuthorName":"沈建琪"},{"authorName":"张秋长","id":"ee857226-acce-4968-b11a-639a90d14e1d","originalAuthorName":"张秋长"},{"authorName":"贾晓伟","id":"9009ba91-97b8-4709-83e2-a40c54c8c1b1","originalAuthorName":"贾晓伟"}],"doi":"","fpage":"1168","id":"3c1f4fcd-376c-4782-86b4-0c67e99b15ef","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d667282b-b650-45aa-86f6-9b85c8aada72","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"96e82d8a-aab3-43b9-9dfd-b977a5ec8553","keyword":"激光自混频","originalKeyword":"激光自混频"},{"id":"7fcd76f5-fa97-43c9-a918-edefd0c9c66f","keyword":"功率密度","originalKeyword":"功率谱密度"},{"id":"0bf26e3e-8587-4c94-942e-343f23fc0519","keyword":"佛克脱函数","originalKeyword":"佛克脱函数"},{"id":"070f6316-322f-49c3-b39d-115d45a8f7a8","keyword":"多普勒峰","originalKeyword":"多普勒峰"},{"id":"d9f8b632-561a-4f86-96c8-d1d464fad7cc","keyword":"线展宽","originalKeyword":"谱线展宽"}],"language":"zh","publisherId":"gcrwlxb201207019","title":"纳米流体的激光自混频功率密度研究","volume":"33","year":"2012"},{"abstractinfo":"在集输-S型柔性立管系统中实验研究了空气-水两相流的流型,研究了不同流型下立管段压差波动信号的频域特征,分析了压差波动信号的功率特性(PSD)。结果表明,随着流型由严重段塞流向稳定流动的转变,立管压差波动信号的能量值逐渐降低,能量值的频率范围逐渐升高。不同流型的功率能量值及主峰所在频率存在很大差别,压差信号的功率密度函数可作为识别S型柔性立管系统中流型的有效手段。","authors":[{"authorName":"李乃良","id":"afd66103-0724-48f3-9010-04b7edacaa31","originalAuthorName":"李乃良"},{"authorName":"李文升","id":"252af270-c070-435a-b95b-17608fe83d81","originalAuthorName":"李文升"},{"authorName":"郭烈锦","id":"58f78b73-b321-4c1f-b0e8-ac1981a61142","originalAuthorName":"郭烈锦"}],"doi":"","fpage":"1160","id":"84801fc0-4775-4fae-9baf-df973e91b502","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3db305a6-e752-4d48-b933-ba388861b582","keyword":"S型柔性立管","originalKeyword":"S型柔性立管"},{"id":"e10207aa-c6f7-49b2-98c0-e5e02dd23a4c","keyword":"流型","originalKeyword":"流型"},{"id":"8cdbca6f-3e68-4949-b140-b6488b5453f9","keyword":"流型识别","originalKeyword":"流型识别"},{"id":"dc40ce69-f1bb-4153-9041-ae98784fa52d","keyword":"功率密度","originalKeyword":"功率谱密度"}],"language":"zh","publisherId":"gcrwlxb201207017","title":"集输-S型立管内气液两相流流型的PSD特征","volume":"33","year":"2012"},{"abstractinfo":"综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义.","authors":[{"authorName":"韩磊","id":"ab841b92-f049-4303-aad5-035348ccef9c","originalAuthorName":"韩磊"}],"doi":"","fpage":"84","id":"1e2fb89d-d393-45ed-8c5f-e3980bd322ce","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"dc4fd66c-9505-47c7-9b99-16b5c1204850","keyword":"电化学噪声分析","originalKeyword":"电化学噪声分析"},{"id":"a35df565-c933-4fc3-b80a-6b3e29493b81","keyword":"多项式拟合","originalKeyword":"多项式拟合"},{"id":"8acc7af7-3ff5-431d-b285-8b9bc5c104c8","keyword":"统计分析","originalKeyword":"统计分析"},{"id":"f56d2e83-ed6b-426b-aaec-492588acc59f","keyword":"快速傅立叶变换","originalKeyword":"快速傅立叶变换"},{"id":"f2b00e67-e8d1-4781-8ff0-31d604dfb5aa","keyword":"功率密度","originalKeyword":"功率谱密度"},{"id":"73e5c622-741c-482c-8428-a345fb39b5cf","keyword":"小波变换","originalKeyword":"小波变换"}],"language":"zh","publisherId":"fsyfh201501019","title":"电化学噪声数据处理方法概述","volume":"36","year":"2015"},{"abstractinfo":"采用直流磁控溅射技术制备超薄Au膜,用原子力显微镜观察薄膜的表面形貌.功率密度计算结果显示,随着溅射时间增加,高频段曲线拟合直线的斜率增大,相应的分形维数从2.579减小到2.500;而低频段曲线拟合直线的斜率减小,相应的分形维数由2.607增大到2.819,薄膜表面形貌存在多尺度行为.多重分形结果表明,随着溅射时间的增加,分形宽Δα从0.051增大到0.118,说明薄膜表面高度分布范围愈来愈宽,表面粗糙度愈来愈大,与rms研究结果一致.样品的Δf均>0,说明样品表面最高峰位的数目均多于最低谷位的数目.","authors":[{"authorName":"吕建国","id":"3f340520-610e-40d9-9a99-b40ff5cff9f4","originalAuthorName":"吕建国"},{"authorName":"宋学萍","id":"f7606674-3968-48c8-80cc-cd97cde49e88","originalAuthorName":"宋学萍"},{"authorName":"孙兆奇","id":"4bf00d30-cf85-4ffd-a41f-a10c7461c2b3","originalAuthorName":"孙兆奇"}],"doi":"","fpage":"1261","id":"bf252ad8-515c-44fd-bc6b-a5522b81232e","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8780673a-169f-4a93-98d1-d2f8a41d434a","keyword":"超薄Au膜","originalKeyword":"超薄Au膜"},{"id":"be20b8df-3100-405c-8fa5-b34bfd013f83","keyword":"原子力显微镜","originalKeyword":"原子力显微镜"},{"id":"55e22b38-9e39-4829-a2a4-eea10afd4612","keyword":"功率密度","originalKeyword":"功率谱密度"},{"id":"7935f3b3-c03e-4790-866e-ab713070537b","keyword":"多重分形","originalKeyword":"多重分形谱"}],"language":"zh","publisherId":"gncl201007042","title":"溅射超薄Au膜表面形貌的分形表征","volume":"41","year":"2010"},{"abstractinfo":"在真空直流条件下对针针电极的环氧树脂进行闪络老化实验,闪络次数分别为0、50、100、200,通过原子力显微镜(AFM)观察材料表面,获取绝缘材料表面灰度图,并计算表面功率密度,定量分析材料表面形貌的变化趋势.结果表明:表面功率密度计算结果与定性分析一致;闪络老化后垂直于电极连线方向的低频谱值远大于沿电极方向的低频谱值,表明闪络后材料表面在垂直于电极连线的方向有更明显的沟壑和突起.","authors":[{"authorName":"谢庆","id":"c3648444-912b-4298-90b2-80fe72160613","originalAuthorName":"谢庆"},{"authorName":"王幼男","id":"4177a060-d903-4811-b07f-ab65c9901c6e","originalAuthorName":"王幼男"},{"authorName":"刘利珍","id":"5adcfe80-96ca-4dda-823f-2afd29b235a5","originalAuthorName":"刘利珍"},{"authorName":"焦羽丰","id":"0b35a0a4-37ec-4029-87ed-0a370a5d7c7f","originalAuthorName":"焦羽丰"},{"authorName":"王涛","id":"a089ffcc-79e8-46fb-9f1a-26f723007a27","originalAuthorName":"王涛"}],"doi":"10.16790/j.cnki.1009-9239.im.2017.04.012","fpage":"56","id":"87f6a654-12f3-4923-ae93-88e65f7783ac","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"2a14ae3e-44cf-4f3d-a0b3-fece2189d41a","keyword":"真空","originalKeyword":"真空"},{"id":"f59e2140-a13f-435a-873c-d71124dd7332","keyword":"沿面闪络","originalKeyword":"沿面闪络"},{"id":"cee1366b-da53-4800-89b8-eb4c9a21657d","keyword":"老化","originalKeyword":"老化"},{"id":"ef945ae3-9698-4a63-8772-abf9f90f20fa","keyword":"表面形貌","originalKeyword":"表面形貌"},{"id":"322eb952-4324-4a7a-b334-45d8721cb625","keyword":"表面功率密度","originalKeyword":"表面功率谱密度"}],"language":"zh","publisherId":"jycltx201704012","title":"基于功率密度分析的针针电极下环氧树脂不同老化程度表面形貌研究","volume":"","year":"2017"},{"abstractinfo":"以电化学噪声测试技术在腐蚀领域中的应用为背景,回顾了近10年来电化学噪声在腐蚀监测、理论研究、图谱分析与数据解析方面的进展,通过了解和掌握电化学噪声测试技术,能从更多的途径知道腐蚀的本质,因而着重阐述了基于时域和频域的分析方法及各自的局限性,最后简介了小波分析的特点.","authors":[{"authorName":"董泽华","id":"75c2bebe-1aa1-4bc4-bc08-11ac0fdc9035","originalAuthorName":"董泽华"},{"authorName":"郭兴蓬","id":"60f61c06-dc10-4013-99cc-8ead9c1cb7bd","originalAuthorName":"郭兴蓬"},{"authorName":"郑家燊","id":"0932657b-53d1-447f-ab7b-953dee55d88f","originalAuthorName":"郑家燊"}],"doi":"10.3969/j.issn.1001-1560.2001.07.010","fpage":"20","id":"7c190aff-211e-4084-8bfc-397d7bec9ee7","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"3ef9acf9-eb6c-44a4-bb84-35ea788c8740","keyword":"电化学噪声","originalKeyword":"电化学噪声"},{"id":"b175dfb6-3c7d-4713-81da-de57077fa1f1","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"50ee5c59-db73-456d-a2c5-942de8deb70c","keyword":"噪声电阻","originalKeyword":"噪声电阻"},{"id":"5b3e88b7-aefb-47d8-93d1-14d521956064","keyword":"功率密度","originalKeyword":"功率谱密度"},{"id":"c49fa1da-1bef-41d8-a8f6-52bb7bc71f3e","keyword":"小波变换","originalKeyword":"小波变换"}],"language":"zh","publisherId":"clbh200107010","title":"电化学噪声的分析方法","volume":"34","year":"2001"},{"abstractinfo":"在一台单转子低速轴流压气机上,以叶顶间隙泄漏流非定常性为切入点,通过实验测量沿弦向和周向的壁面非定常压力,分析了叶顶端区非定常波动特征沿叶片弦长的调频特性.研究了占主导地位的叶顶间隙泄漏流非定常波动沿周向的传播特征,进一步分析叶顶间隙泄漏流非定常性波动到失速先兆信号产生的演变规律.实验结果表明,由叶顶间隙泄漏流非定常性波动主导的叶顶端区流场在压气机节流过程中,其周向传播速度逐渐增加,直到失速先兆的产生.由此可以判断,叶顶间隙泄漏流非定常性是失速先兆信号分析和预测的流场依据,为澄清和理解叶顶间隙泄漏流非定常和失速先兆至失速的不同流动特征的统一流体力学机理提供指导.","authors":[{"authorName":"李继超","id":"1c35fc5a-3077-48d9-95d2-b09d2ccfe5f7","originalAuthorName":"李继超"},{"authorName":"白冰","id":"d098d4b6-a97a-4e2d-aad3-4f6d40919de4","originalAuthorName":"白冰"},{"authorName":"耿少娟","id":"fd0d3a2c-1ffd-439f-b2f2-fa4f337f10d9","originalAuthorName":"耿少娟"},{"authorName":"聂超群","id":"d812a613-dad8-4727-b90a-607d85fdd916","originalAuthorName":"聂超群"}],"doi":"","fpage":"2599","id":"c655b67e-61f3-42a4-91c8-27a331447fc0","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c707e3fc-83da-4a94-8d2a-81ff21fb816b","keyword":"压气机","originalKeyword":"压气机"},{"id":"66cc7efc-5e4e-4108-b78c-67b1c86d348c","keyword":"叶顶间隙泄漏流非定常性","originalKeyword":"叶顶间隙泄漏流非定常性"},{"id":"366c9774-dd44-404e-9ddb-942bfca85c4a","keyword":"周向传播","originalKeyword":"周向传播"},{"id":"29211dca-36ea-45d3-a804-29c0218c815a","keyword":"失速先兆","originalKeyword":"失速先兆"},{"id":"9c60a9e6-5ffd-439f-9a8f-683c93e5dacb","keyword":"功率密度","originalKeyword":"功率谱密度"},{"id":"19334c86-37a2-47ca-81ea-5a41a50ad735","keyword":"均方根","originalKeyword":"均方根"}],"language":"zh","publisherId":"gcrwlxb201512013","title":"轴流压气机叶顶间隙泄漏流的周向传播特性实验研究","volume":"36","year":"2015"},{"abstractinfo":"运用微Raman仪以不同功率的激光入射到用阳极脉冲腐蚀制备的多孔硅样品以研究多孔硅的稳定性.用斯托克斯与反斯托克斯散射强度的比率确定样品的温度.观察比较不同温度下多孔硅样品的Raman趋向,发现在激光功率和样品温度之间的关系曲线上有3个过程,与Raman频移和Raman强度的曲线相一致.所有现象都可以用Si-O键和非晶Si被氧化的机制进行解释.","authors":[{"authorName":"任鹏","id":"102ff4d7-d077-46dc-ab48-c830c095296c","originalAuthorName":"任鹏"},{"authorName":"孙立来","id":"afcf2ee3-c01f-46d9-9788-c80c0374a792","originalAuthorName":"孙立来"},{"authorName":"廖家欣","id":"bb18ba6e-9475-4cd2-b8b9-ce5da1d8c066","originalAuthorName":"廖家欣"},{"authorName":"李君求","id":"1adcfa6a-f07b-41af-ae4b-1cf77797030a","originalAuthorName":"李君求"},{"authorName":"万小军","id":"09bb3e3f-b47c-4091-8b68-b68a0e6d47c3","originalAuthorName":"万小军"},{"authorName":"史向华","id":"73e4ec1e-f99e-4eb1-b157-3f84449c951b","originalAuthorName":"史向华"},{"authorName":"刘小兵","id":"c5eadec8-4543-4d23-983f-dec6459502c2","originalAuthorName":"刘小兵"}],"doi":"","fpage":"138","id":"390124dc-cc08-4344-bf1e-c84c351ff699","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1aeb464c-8ab1-43f7-a644-22c6118a81e7","keyword":"多孔硅","originalKeyword":"多孔硅"},{"id":"7b55a72d-faf5-445c-8d8c-ffd8297a589a","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"61f862b7-f61b-40ab-83d7-6a621ec8a8af","keyword":"微Raman","originalKeyword":"微Raman谱"},{"id":"eaa1609c-803e-43e9-a309-6e2444109046","keyword":"激光功率","originalKeyword":"激光功率"}],"language":"zh","publisherId":"cldb200705037","title":"激光功率对多孔硅微Raman的影响","volume":"21","year":"2007"},{"abstractinfo":"使用自行研制的新型MPCVD装置,以H2-CH4为气源,在输入功率为5kW,沉积压力分别为13.33、26.66kPa和不同的甲烷浓度下制备了金刚石膜。利用等离子体发射光谱法对等离子体中的H原子和含碳的活性基团浓度进行了分析。用扫描电镜、激光拉曼对金刚石膜的表面和断口形貌、金刚石膜的品质等进行了表征。实验结果表明,使用新型MPCVD装置能够在较高的功率密度下进行金刚石膜的沉积;提高功率密度能使等离子体中H原子和含碳活性基团的浓度明显增加,这将提高金刚石膜的沉积速度,并保证金刚石膜具有较高的质量。","authors":[{"authorName":"于盛旺","id":"a2a73616-dbb2-48e4-a9ba-9a28640bb1dc","originalAuthorName":"于盛旺"},{"authorName":"李晓静","id":"3911b0dd-6860-49d6-b602-e738c817666a","originalAuthorName":"李晓静"},{"authorName":"张思凯","id":"4aa24fac-2c72-4e06-a46b-fd83088b1462","originalAuthorName":"张思凯"},{"authorName":"范朋伟","id":"3bc0c7fb-aedf-4149-93f4-cdd0c9b08c81","originalAuthorName":"范朋伟"},{"authorName":"黑鸿君","id":"2564b48c-cc20-4467-9d7f-e17caaf26de0","originalAuthorName":"黑鸿君"},{"authorName":"唐伟忠","id":"0c9241dd-2bd8-4d71-bb19-d92c0dea3df9","originalAuthorName":"唐伟忠"},{"authorName":"吕反修","id":"30b5e341-f312-4a3a-863d-801bc7720cd8","originalAuthorName":"吕反修"}],"doi":"","fpage":"1722","id":"705fe904-7abd-4111-b517-dd67c5b18fd1","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0a989e09-3a34-4a3f-97f6-4fb6b75f4c13","keyword":"新型MPCVD装置","originalKeyword":"新型MPCVD装置"},{"id":"cadac840-f754-4c94-95fa-c926ec1588b7","keyword":"金刚石膜","originalKeyword":"金刚石膜"},{"id":"71bdc16c-de59-4010-b88c-c776af84ebff","keyword":"功率密度","originalKeyword":"功率密度"},{"id":"e9a8341f-b527-432c-b287-e351a4302f99","keyword":"生长速率","originalKeyword":"生长速率"}],"language":"zh","publisherId":"gncl201109047","title":"新型MPCVD装置在高功率密度下高速沉积金刚石膜","volume":"42","year":"2011"},{"abstractinfo":"计入工质与高、低温侧换热器的热阻损失及压气机和涡轮机中的不可逆压缩和膨胀损失,用有限时间热力学方法,导出了恒温热源条件下不可逆布雷顿循环功率密度与压比间的解析式,借助于数值计算,研究了高、低温侧换热器的热导率分配和工质与热源间的热容率匹配对最大功率密度的影响。","authors":[{"authorName":"陈林根","id":"1f58e793-ecbb-4670-98bb-4d27d93628a0","originalAuthorName":"陈林根"},{"authorName":"过增元","id":"d146d706-ff71-4fd2-91c6-8129d35603e1","originalAuthorName":"过增元"},{"authorName":"郑军林","id":"65b0ef63-b0a6-4b8c-8229-3caccdb9419c","originalAuthorName":"郑军林"},{"authorName":"孙丰瑞","id":"feb8598d-8264-47a0-916b-8d910cde2d6f","originalAuthorName":"孙丰瑞"}],"doi":"","fpage":"151","id":"e131be99-7b5c-4663-9ab1-67df62b560a0","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f85615e4-8ea0-48c9-8127-e194d861df72","keyword":"有限时间热力学","originalKeyword":"有限时间热力学"},{"id":"ca4f78c9-b27f-4bc2-802b-325afb739fc7","keyword":"布雷顿循环","originalKeyword":"布雷顿循环"},{"id":"6cb25147-f8c6-4e97-9d22-2523f310d9f5","keyword":"功率密度","originalKeyword":"功率密度"},{"id":"d7ede93a-e94c-4bd0-89e3-8d24085e9726","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"gcrwlxb200102006","title":"变温热源布雷顿循环的功率密度优化","volume":"22","year":"2001"}],"totalpage":3067,"totalrecord":30661}