{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"系统分析了高炉用新型埋管式铸铜冷却壁的热态性能及热变形.热态试验结果表明,铸铜冷却壁与轧制铜冷却壁在热态性能上没有大的区别,冷却能力很好,壁体与埋管间没有气隙热阻.以有限元为手段,采用热-结构耦合的方法计算了高温状态下铸铜冷却壁的温度分布、应力和应变,模拟计算结果与热态实测数据基本吻合.计算结果表明,铸铜冷却壁在高炉炉况下的基体温度以及由此产生的热应力都不足以使其很快产生裂纹,能满足长寿高炉的要求.","authors":[{"authorName":"石琳","id":"1a9cda32-8e47-4ca4-9029-9ccb9ec3cef3","originalAuthorName":"石琳"},{"authorName":"程素森","id":"534cfec4-655a-4654-bc54-eba22903c8b0","originalAuthorName":"程素森"},{"authorName":"阮新伟","id":"9e57ec33-f332-4f1a-9a7c-300ee4d8f1d2","originalAuthorName":"阮新伟"},{"authorName":"许良友","id":"1809ebab-13aa-49d6-a3a3-17691932e502","originalAuthorName":"许良友"}],"doi":"","fpage":"13","id":"4e2e2b5b-00ca-4408-94ca-b44590c4c760","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d0daec05-2ae7-43f2-a031-34ae69fe4dc7","keyword":"高炉","originalKeyword":"高炉"},{"id":"85613a6e-44ed-4983-b167-bcdb8a28416b","keyword":"温度分布","originalKeyword":"温度分布"},{"id":"661b368f-f087-4d3a-81a4-96c81d953c65","keyword":"埋管式铸铜冷却壁","originalKeyword":"埋管式铸铜冷却壁"},{"id":"8ee6cb06-8c3f-44ea-b7a2-6851555babf3","keyword":"应力应变","originalKeyword":"应力应变"}],"language":"zh","publisherId":"gt200606004","title":"高炉铸铜冷却壁的热性能分析","volume":"41","year":"2006"},{"abstractinfo":"达涅利康力斯推出一种新的冷却概念,它将铜冷却壁与浇铸在其中的蒙乃尔铜-镍合金管结合为一个整体.蒙乃尔铜-镍合金管构成冷却水通道.它不仅可使冷却水拥有一条光滑的无泄漏通道,而且具有足够的尺寸灵活性,以满足躲避现有高炉炉壳开口的要求,还可以省去在高炉炉壳内的任何焊接.","authors":[{"authorName":"","id":"dcbdf087-cdc5-4310-9faf-b921c2edae7f","originalAuthorName":""},{"authorName":"","id":"6256e66b-11c4-4380-9799-45e8cbe97942","originalAuthorName":""}],"doi":"","fpage":"79","id":"49d81c45-1459-4d9e-bb11-7a2e239637c9","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ed367c33-d0d9-4924-9ecd-0ec5359d56f7","keyword":"高炉","originalKeyword":"高炉"},{"id":"cdc9cb55-ffd7-4b6e-abdd-3cb9c0989f13","keyword":"长寿","originalKeyword":"长寿"},{"id":"771c91f3-fb11-4a61-a7e9-0b36d08153ef","keyword":"冷却壁","originalKeyword":"冷却壁"}],"language":"zh","publisherId":"gt200703021","title":"可满足高炉严格使用要求的高性能MTT金属管铸铜冷却壁","volume":"42","year":"2007"},{"abstractinfo":"达涅利康力斯推出一种新的冷却概念,它将铜冷却壁与浇铸在其中的蒙乃尔铜镍合金管结合为一个整体。蒙乃尔铜镍合金管构成冷却水通道。它不仅可使冷却水拥有一条光滑的无泄漏通道,而且具有足够的尺寸灵活性,以满足躲避现有高炉炉壳开口的要求,还可以省去在高炉炉壳内的任何焊接。","authors":[{"authorName":"E.vanSteinCallenfels","id":"62674c11-803b-47a4-81ea-550b5443e68a","originalAuthorName":"E.vanSteinCallenfels"},{"authorName":"R.vanLaar","id":"96a34cec-4191-4f89-97a8-bf79076ca4a6","originalAuthorName":"R.vanLaar"}],"categoryName":"|","doi":"","fpage":"79","id":"a2374b2d-7e28-4b9f-be10-af1d4f31c4a9","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2ac160bf-60a3-49cc-adc7-0d904a5c2a38","keyword":"高炉;长寿;冷却壁","originalKeyword":"高炉;长寿;冷却壁"}],"language":"zh","publisherId":"0449-749X_2007_3_19","title":"可满足高炉严格使用要求的高性能MTT金属管铸铜冷却壁","volume":"42","year":"2007"},{"abstractinfo":"根据合金化管铸铁冷却壁热态试验数据确定了合金化管铸铁冷却壁温度场数值模拟的边界条件,利用ANSYS软件、采用热-结构耦合的方法计算了高温状态下合金化管铸铁冷却壁内钢质冷却水管的变形,分析了气隙层和水管热变形对合金化管铸铁冷却壁寿命的影响,得出保证合金化管铸铁冷却壁长寿的最佳气隙层厚度和相应的最佳使用热负荷。","authors":[{"authorName":"石琳","id":"f8163bd8-51d3-424c-ba13-1eee548e3cca","originalAuthorName":"石琳"},{"authorName":"程素森","id":"a2a6cd1b-14e5-454a-ac89-e26b40c618e5","originalAuthorName":"程素森"}],"categoryName":"|","doi":"","fpage":"9","id":"0e50a57d-f76a-4623-ab11-678c357d4bd5","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"f8e2a2c2-8ab9-4ad3-81b3-da86c94a1315","keyword":"合金化管铸铁冷却壁;气隙层;热变形","originalKeyword":"合金化管铸铁冷却壁;气隙层;热变形"}],"language":"zh","publisherId":"0449-749X_2007_11_5","title":"合金化管铸铁冷却壁内冷却水管的变形研究","volume":"42","year":"2007"},{"abstractinfo":"根据合金化管铸铁冷却壁热态试验数据确定了合金化管铸铁冷却壁温度场数值模拟的边界条件,利用ANSYS软件、采用热-结构耦合的方法计算了高温状态下合金化管铸铁冷却壁内钢质冷却水管的变形,分析了气隙层和水管热变形对合金化管铸铁冷却壁寿命的影响,得出保证合金化管铸铁冷却壁长寿的最佳气隙层厚度和相应的最佳使用热负荷.","authors":[{"authorName":"石琳","id":"2bb5e6a5-8673-4d9e-ae97-68b139867df6","originalAuthorName":"石琳"},{"authorName":"程素森","id":"421f0f80-25bb-4b5c-87eb-f53a340a8d67","originalAuthorName":"程素森"}],"doi":"","fpage":"9","id":"46a9ea2d-add3-4f1e-bb1c-9e8b0ce944ac","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"8b18c805-1ad5-4ce6-b329-3d1b253af034","keyword":"合金化管铸铁冷却壁","originalKeyword":"合金化管铸铁冷却壁"},{"id":"a264c23b-3ce3-47d8-9e4a-cbd3d3e8fc64","keyword":"气隙层","originalKeyword":"气隙层"},{"id":"eb0ee03c-7669-4235-97b1-c57ed859c8e7","keyword":"热变形","originalKeyword":"热变形"}],"language":"zh","publisherId":"gt200711003","title":"合金化管铸铁冷却壁内冷却水管的变形研究","volume":"42","year":"2007"},{"abstractinfo":"本文介绍了地埋管式土壤储热系统的实验研究情况.在一个储热周期里,对土壤蓄热、静置、取热阶段进行了实验研究,测量了实验条件下蓄热体及周边土壤的温度与含水量.结果表明:在一个储热周期里,蓄热过程中热量损失特别显著;蓄热体温度升高造成土壤含水率发生明显变化-蓄热体边界含水率最高,分别沿蓄热体中心与蓄热体外两个方向逐渐降低,在蓄热体中心土壤容积含水率仅为0.12%;蓄热阶段结束两个月后,取热率达到43%左右.这说明使用地埋管式土壤储热系统对太阳能长期储存是可行的,显示了较好的应用前景.","authors":[{"authorName":"底冰","id":"2da68a3a-5791-47ae-8d99-83d064fe9f74","originalAuthorName":"底冰"},{"authorName":"马重芳","id":"04e385e1-2579-4786-9b4f-3eaaf30fbe52","originalAuthorName":"马重芳"},{"authorName":"张广宇","id":"c1159f62-d041-46cb-a98e-d7c6ddce4f65","originalAuthorName":"张广宇"}],"doi":"","fpage":"813","id":"0101356b-160f-4225-a3cd-69da0c01116d","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"18504644-d266-499d-8cbb-45d2db034af7","keyword":"地下蓄能","originalKeyword":"地下蓄能"},{"id":"eb64a491-b538-457f-942e-9535c5950398","keyword":"地下埋管蓄能","originalKeyword":"地下埋管蓄能"},{"id":"ade88a3c-9f47-44a7-a63a-0417291c784e","keyword":"跨季节蓄能","originalKeyword":"跨季节蓄能"},{"id":"bbba95fb-9397-470b-baa4-7fc28712109c","keyword":"地埋管换热器","originalKeyword":"地埋管换热器"},{"id":"11c20586-4559-430d-a281-39c45e25f058","keyword":"热湿传递","originalKeyword":"热湿传递"}],"language":"zh","publisherId":"gcrwlxb201005024","title":"地埋管式土壤储热系统的实验研究","volume":"31","year":"2010"},{"abstractinfo":"为了满足我国高炉对铜冷却壁的需求,结合铸铜冷却壁热态试验数据、采用数值模拟的方法优化设计出一种价格更低的轻型长寿铜冷却壁.新设计的冷却壁改变了以往的冷却壁设计理念,将冷却通道放置在肋与壁体之间,通道、肋、镶砖平行,整个冷却壁在高炉内水平放置.冷却壁厚度95 mm,比普通铜冷却壁薄,导致高炉内有效使用容积增加,而铜冷却壁费用降低30%.为推广和开发新型铜冷却壁提供了可靠的理论依据.","authors":[{"authorName":"石琳","id":"27b9fcb2-77b7-4eea-982c-a7bfd9a65892","originalAuthorName":"石琳"},{"authorName":"丁根远","id":"72019069-9afb-41a0-a768-d9b71652c2d1","originalAuthorName":"丁根远"},{"authorName":"孙玉琴","id":"68bc7838-ac5e-4deb-b6c5-7a7fde7b746a","originalAuthorName":"孙玉琴"}],"doi":"","fpage":"12","id":"845e517f-8694-4384-ae4f-13af9ad0739d","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"229ca4fa-631a-42fa-a379-1a94f76b8988","keyword":"轻型铜冷却壁","originalKeyword":"轻型铜冷却壁"},{"id":"fb5b0f41-689f-43db-b1d9-ba266816c628","keyword":"温度场","originalKeyword":"温度场"},{"id":"b2dbe163-1143-452b-bf53-95068eb98b65","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gtyjxb200802003","title":"轻型铜冷却壁的设计及热态性能","volume":"20","year":"2008"},{"abstractinfo":"为了满足我国高炉对铜冷却壁的需求,结合铸铜冷却壁热态试验数据、采用数值模拟的方法优化设计出一种价格更低的轻型长寿铜冷却壁。新设计的冷却壁改变了以往的冷却壁设计理念,将冷却通道放置在肋与壁体之间,通道、肋、镶砖平行,整个冷却壁在高炉内水平放置。冷却壁厚度95 mm,比普通铜冷却壁薄,导致高炉内有效使用容积增加,而铜冷却壁费用降低30%。为推广和开发新型铜冷却壁提供了可靠的理论依据。","authors":[{"authorName":"石琳","id":"66f6e71b-5df4-40ee-acfd-4d1b856bab5f","originalAuthorName":"石琳"},{"authorName":"丁根远","id":"a52569ac-ff45-4658-a1c7-1aa222622ab2","originalAuthorName":"丁根远"},{"authorName":"孙玉琴","id":"a459909b-f5ec-4626-b649-1a6a3f1b8a35","originalAuthorName":"孙玉琴"}],"categoryName":"|","doi":"","fpage":"12","id":"ea1cec8a-ca74-4eee-888f-4d62b90da1b3","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"46f2cf05-215d-433e-910b-69a6ea470df6","keyword":"轻型铜冷却壁;温度场;数值模拟","originalKeyword":"轻型铜冷却壁;温度场;数值模拟"}],"language":"zh","publisherId":"1001-0963_2008_2_6","title":"轻型铜冷却壁的设计及热态性能","volume":"20","year":"2008"},{"abstractinfo":"传统闭式冷却塔采用的金属盘管抗冻和耐腐蚀性差,严重制约了闭式冷却塔的推广使用.导热塑料管具有良好的抗冻性、耐腐蚀性和阻垢性,理论计算在闭式冷却塔中应用具有可行性.本文通过实验研究,得出现有的导热塑料管抗冻性可以满足闭式冷却塔需求,但是导热系数还偏小,大规模推广替代金属管还需要继续提高管材的导热系数.","authors":[{"authorName":"章立新","id":"bf9f1f88-9392-413d-8ca1-90309f9b21e7","originalAuthorName":"章立新"},{"authorName":"白亮","id":"eade5f7e-67ae-469c-a14d-d59602ec01a0","originalAuthorName":"白亮"},{"authorName":"范志远","id":"71af74b1-56e4-4b46-85f0-24ced0c85a7a","originalAuthorName":"范志远"},{"authorName":"吴晓芬","id":"164768b3-128e-4313-b9d0-0e1acf1bec11","originalAuthorName":"吴晓芬"},{"authorName":"陈岩永","id":"34fae1b7-61cb-40d4-999b-829ea7a5ae8c","originalAuthorName":"陈岩永"},{"authorName":"刘婧楠","id":"93d96d5c-5652-4b3a-94d6-659e02295b2c","originalAuthorName":"刘婧楠"},{"authorName":"姬翔宇","id":"f40111e4-2e6a-44b4-b341-65cc72b70f8c","originalAuthorName":"姬翔宇"}],"doi":"10.3969/j.issn.1003-0999.2012.04.016","fpage":"75","id":"d7265d73-7faf-41de-a185-9659d2d2b5fd","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"837eab42-eed2-490b-983f-e7b58572b02d","keyword":"导热塑料","originalKeyword":"导热塑料"},{"id":"d6e11164-9536-4e44-854c-b3e14ef26ebf","keyword":"闭式冷却塔","originalKeyword":"闭式冷却塔"},{"id":"2ab76815-dce3-4466-bf5a-6dc5332c2494","keyword":"盘管","originalKeyword":"盘管"},{"id":"071058be-ef2c-487e-b6c3-38d5671a2f5e","keyword":"抗冻","originalKeyword":"抗冻"},{"id":"15121db3-6850-47b5-a081-dcad894fff12","keyword":"耐腐蚀","originalKeyword":"耐腐蚀"}],"language":"zh","publisherId":"blgfhcl201204016","title":"导热塑料管应用于闭式冷却塔的实验研究","volume":"","year":"2012"},{"abstractinfo":"搅拌桨转速在800/1 000 r/min下,对多壁碳纳米管(MWCNTs)进行湿式球磨0.5和1.0h.通过激光粒度仪、XRD、TEM、Raman光谱和TG-DTA,分别对球磨后MWCNTs的结构形貌、断裂机理和缺陷进行分析.结果表明,湿式球磨0.5和1h,可以快速切断MWCNTs得到U字形端口的MWCNTs,并且其主体结构没有被破坏;相比原始MWCNTs的无定形碳含量分别增加了2.2%和1.8%.MWCNTs湿式球磨断裂机理为高速碰撞的磨球产生巨大的压强作用在MWCNTs表面使其发生轴压屈曲形变,表现为凹陷、弯曲、扭结和断裂等.微观解释为,MWCNTs受到外加压强超过极限压强时,通过改变C-C键夹角释放部分能量来保持整个体系能量的平衡.","authors":[{"authorName":"张文忠","id":"88487165-1708-49c3-8155-3414d29635a3","originalAuthorName":"张文忠"},{"authorName":"蔡晓兰","id":"3017cd1b-9e94-4507-9600-f6785179caeb","originalAuthorName":"蔡晓兰"},{"authorName":"胡翠","id":"c627a862-75ea-40f5-ba55-2ef82e536977","originalAuthorName":"胡翠"},{"authorName":"周蕾","id":"c88342e5-2170-43a4-993e-e8cf646162b2","originalAuthorName":"周蕾"},{"authorName":"王子阳","id":"d061889c-571a-4191-a2f2-b8d1ec95a0a5","originalAuthorName":"王子阳"},{"authorName":"彭刚","id":"fb1e3f4e-f7e9-43cc-8468-77e31b929a33","originalAuthorName":"彭刚"},{"authorName":"郭鲤","id":"9469fcf5-212b-4da6-afc9-9e3cc628a30b","originalAuthorName":"郭鲤"},{"authorName":"朱伟","id":"2f60c3f1-4e71-4a77-99fa-18d363bc0ec7","originalAuthorName":"朱伟"}],"doi":"10.3969/j.issn.1001-9731.2016.01.033","fpage":"1163","id":"3d3daa72-269c-4b44-91bd-7a46836e2a6d","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8f511ee2-9e3c-44fb-93f3-46dd809372b3","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"ddf44937-0ebc-4128-9df4-270982513876","keyword":"湿式球磨","originalKeyword":"湿式球磨"},{"id":"e2824d80-2144-48f7-bfdd-5ca6445d1b60","keyword":"断裂机理","originalKeyword":"断裂机理"},{"id":"be09efe1-618a-4921-ad7b-bd21a4e8017a","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"gncl201601033","title":"湿式球磨多壁碳纳米管断裂机理及缺陷分析","volume":"47","year":"2016"}],"totalpage":2057,"totalrecord":20568}