{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对热轧带肋钢筋(HRB400)力学性能指标偏低的典型炉次,采取化学成分、显微组织、断口扫描、夹杂物分析等方法,对产品实物进行了分析.结果表明,组织粗大、严重铁素体网状、基体金属中存在大颗粒夹杂物、钒的强化作用未充分发挥等因素,是导致钢筋力学性能偏低的主要原因.根据分析结果,采取了针对性的工艺改进措施,杜绝了钢筋性能偏低的现象.","authors":[{"authorName":"","id":"05f9be5c-a4b7-4931-9b85-c7deecb387b5","originalAuthorName":"刘金超"},{"authorName":"栾兆亮","id":"30a11416-1940-43e3-b6c3-724a8f16d5c7","originalAuthorName":"栾兆亮"},{"authorName":"赵蕾","id":"c248e51b-3218-413e-a2c1-7cf374bccfcc","originalAuthorName":"赵蕾"},{"authorName":"亓杰","id":"886ef180-5ec0-42b8-9814-fb80f0c5b1ac","originalAuthorName":"亓杰"}],"doi":"","fpage":"35","id":"40bdb333-bf32-4399-9a99-32dc17b0d644","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"22b6f270-28fe-4973-bbb8-817ef33ef15b","keyword":"热轧带肋钢筋","originalKeyword":"热轧带肋钢筋"},{"id":"6bf28cca-255b-4387-bede-51dbc462b97c","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"63357d84-2420-4c45-a992-0ba6049c394b","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"28975a43-31ff-489a-81dd-eee08a111322","keyword":"夹杂物","originalKeyword":"夹杂物"}],"language":"zh","publisherId":"wlcs201003010","title":"热轧带肋钢筋(HRB400)力学性能指标低的原因分析","volume":"28","year":"2010"},{"abstractinfo":"为了探讨高锰含量对微合金钢性能的影响及其夹杂物存在形态,采用低碳+钒铁微合金化工艺生产一种高强度热轧型钢,锰质量分数为1.50%~1.60%.结果表明:产品屈服强度为440~460 MPa,抗拉强度为600~620MPa,金相组织为铁素体+团状珠光体,带状组织3~4级,晶粒度为7~8.5级,但是锰提高了团状珠光体的相对量,削弱了钢材的低温冲击韧性.锰除固溶于铁基体中外,多以含锰夹杂物的形式存在,主要包括片状硫化锰、球形复合型夹杂物和纺锤体形复合型夹杂物.","authors":[{"authorName":"赵新华","id":"2593635a-9ade-4b7c-9a53-0a748eb93ff1","originalAuthorName":"赵新华"},{"authorName":"","id":"32100d7b-25b4-4174-98ed-36c7f15b2575","originalAuthorName":"刘金超"},{"authorName":"宋玉卿","id":"6623a747-5d06-4145-a090-80b3ce0688fc","originalAuthorName":"宋玉卿"},{"authorName":"付常伟","id":"768a5763-58b3-46ef-9996-88a41962b945","originalAuthorName":"付常伟"},{"authorName":"方林","id":"3f95c6e2-9a33-4b9e-9149-c74dbb1bd899","originalAuthorName":"方金林"}],"doi":"10.13228/j.boyuan.issn1001-0777.20140038","fpage":"9","id":"41dfbbcb-120b-4f59-a337-0b446de281c2","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"b0a0bc9c-7be3-4f95-837f-26a80486f267","keyword":"锰","originalKeyword":"锰"},{"id":"fc15c9a4-0374-48e9-991d-d77225358451","keyword":"高强度","originalKeyword":"高强度"},{"id":"8bc421b2-19d5-49ed-8368-6b2f7bdcd769","keyword":"珠光体","originalKeyword":"珠光体"},{"id":"443d0489-79e5-4729-9208-826fca2a4082","keyword":"夹杂物","originalKeyword":"夹杂物"}],"language":"zh","publisherId":"wlcs201501003","title":"锰含量对微合金钢性能的影响及其夹杂物存在形态","volume":"33","year":"2015"},{"abstractinfo":"分别以孔径为8.5nm、4.4nm和3.1nm的3种蠕虫孔炭WMC-F7、WMC-F30和WMC-F0为载体,合成了纳米Pt2 Sn1/WMC催化剂.XRD与透射电镜结果表明3种载体上的催化剂平均粒径均为3.0nm,其电化学性能却相差很大.研究发现蠕虫孔炭载体的孔径显著影响Pt2 Sn1催化剂的电化学性能:当载体孔径(Dp)大于2倍催化剂平均粒径(dPt)时,催化剂(即Pt2 Sn1/WMC-F7)的电化学活性面积(ESA)和乙醇电氧化(EOR)活性均为最高;当以另外两种孔径的蠕虫孔炭作载体时,Pt2 Sn1催化剂活性很差.这主要归因于WMC-F7的大孔径有利于传质,提高了催化剂的利用率及乙醇电氧化活性.","authors":[{"authorName":"","id":"683486bf-6485-4205-b7ec-9fd23bfde90a","originalAuthorName":"刘金超"},{"authorName":"张成毅","id":"d2820ea5-a0e1-4a0c-9879-eef72006c1d6","originalAuthorName":"张成毅"}],"doi":"10.11896/j.issn.1005-023X.2015.06.008","fpage":"35","id":"d87f1ccf-f589-4be3-9065-b6d41eab43b2","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8f46ea83-90ed-4738-9ce3-dcd771bf8057","keyword":"蠕虫孔炭","originalKeyword":"蠕虫孔炭"},{"id":"c33f9f3e-9e28-4587-a883-fa6c182221e5","keyword":"孔径","originalKeyword":"孔径"},{"id":"6ad248bc-c84e-4e8a-ad08-096eeb762898","keyword":"乙醇电氧化","originalKeyword":"乙醇电氧化"}],"language":"zh","publisherId":"cldb201506008","title":"炭载体孔径对Pt2Sn1/蠕虫孔炭催化剂乙醇电氧化活性的影响","volume":"29","year":"2015"},{"abstractinfo":"从大量的现场试验中提炼板材拉伸和冲击试样,观察断口的不同宏观形貌特征,并加以比对分析,选择典型断口利用金相电镜等手段深入查找形成原因.结果表明:拉伸及冲击的正常韧性断口均表现出了良好的力学性能,拉伸试样异常断口力学性能主要是塑性较差,脆性冲击断口表现的冲击吸收能量较差,层状冲击断口中有片状夹杂物的存在,但冲击吸收能量没有明显下降.","authors":[{"authorName":"王晶","id":"2ac2fac2-529c-4372-a318-259952948197","originalAuthorName":"王晶"},{"authorName":"黄少文","id":"e3b171e0-7c7a-4e97-8241-9efb136ee1d5","originalAuthorName":"黄少文"},{"authorName":"","id":"9cb399b9-c59b-405d-9a31-21c57ddf24f4","originalAuthorName":"刘金超"},{"authorName":"郭峰","id":"8f19e502-09bb-4f6b-bf6c-d2212ed2ccb2","originalAuthorName":"郭峰"},{"authorName":"王彦国","id":"258c9235-a67f-4c03-9cbe-0d24f5526e2d","originalAuthorName":"王彦国"},{"authorName":"卢爱凤","id":"468a22d0-508f-4c0b-b308-ecce1f5b8c3f","originalAuthorName":"卢爱凤"}],"doi":"10.13228/j.boyuan.issn1001-0777.20150108","fpage":"29","id":"2ae9bb21-af03-448c-a557-0cb5b479714b","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"d140935e-0b0f-45f6-91c8-9ed9c0b40c83","keyword":"断口","originalKeyword":"断口"},{"id":"1e39cfc2-88af-4d99-973d-3fd5e3cee889","keyword":"形貌","originalKeyword":"形貌"},{"id":"283b5465-574a-4ff3-ab1d-1d6bac17fa4e","keyword":"偏析","originalKeyword":"偏析"}],"language":"zh","publisherId":"wlcs201601008","title":"板材拉伸冲击试样断口识别及分析","volume":"34","year":"2016"},{"abstractinfo":"针对Q345B型钢表面结疤现象,从材料的化学成分、金相组织等方面进行了系统的分析与观察.分析结果表明:材料中的杂质含量高,轧制时产生内应力是导致表面结疤的主要原因.因此,进一步优化冶炼工艺制度、控制炼钢时钢液的化学成分和夹杂、保证钢液的纯净度,可以有效地预防钢材表面结疤缺陷.","authors":[{"authorName":"卢爱凤","id":"3bd3b305-8989-4598-a5d6-36d4cd023f93","originalAuthorName":"卢爱凤"},{"authorName":"麻衡","id":"92938806-d192-45ae-9d2e-fb8a52752753","originalAuthorName":"麻衡"},{"authorName":"李红柳","id":"a6ad41ee-d841-42ad-80fb-8277bcfc3468","originalAuthorName":"李红柳"},{"authorName":"","id":"0d1380b7-f4ce-4ef6-b200-b2d76b9a842c","originalAuthorName":"刘金超"},{"authorName":"杜娟","id":"b5240d69-5b22-4a37-a03b-2a8d97049734","originalAuthorName":"杜娟"},{"authorName":"陈华","id":"575293c0-6ba0-4892-8362-781f67ff74d7","originalAuthorName":"陈华"}],"doi":"10.13228/j.boyuan.issn1001-0777.20150104","fpage":"14","id":"b97d0538-b90c-458b-971c-078242f31400","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"a35d420d-f976-4425-99e8-a75338de436a","keyword":"Q345B钢","originalKeyword":"Q345B钢"},{"id":"a4c43a09-5d31-409d-9312-cb3d831c48a8","keyword":"表面结疤","originalKeyword":"表面结疤"},{"id":"214d4389-8e5c-49a5-aa6a-1add5fe8ae5f","keyword":"分析与控制","originalKeyword":"分析与控制"}],"language":"zh","publisherId":"wlcs201601004","title":"Q345B型钢翼缘边部表面结疤原因分析与控制","volume":"34","year":"2016"},{"abstractinfo":"针对S355J2钢板表面出现裂纹缺陷的现象,采用金相显微镜、扫描电镜、能谱仪等检验手段分别从表面裂纹形貌、非金属夹杂物、组织分布等方面进行一系列分析.结果表明:裂纹起源于结晶器保护渣的卷入,并且在加热保温过程中裂纹两侧发生了脱碳以及内氧化.","authors":[{"authorName":"孙雪娇","id":"0bbace46-60e4-4323-8c62-d416565df394","originalAuthorName":"孙雪娇"},{"authorName":"高立福","id":"6391d128-d02d-4fc2-bcc9-df4455521348","originalAuthorName":"高立福"},{"authorName":"","id":"98bf0b72-4420-4621-b07e-81127c014d60","originalAuthorName":"刘金超"},{"authorName":"闵凡启","id":"f52e55ed-fcd2-46a1-9ec8-588e27ef819a","originalAuthorName":"闵凡启"},{"authorName":"张婷","id":"933aeab3-1930-423b-8276-c052a0d948a3","originalAuthorName":"张婷"}],"doi":"10.13228/j.boyuan.issn1001-0777.20150106","fpage":"22","id":"ef5422ad-1e65-494d-808f-42b8fff72bf8","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"47655dd9-99ac-46b8-a30d-9808ad215b63","keyword":"S355J2钢","originalKeyword":"S355J2钢"},{"id":"3d47858c-463d-40f6-8d15-350da438ead3","keyword":"表面裂纹","originalKeyword":"表面裂纹"},{"id":"e268f3c8-984f-4108-92a2-00aa59ab395e","keyword":"脱碳层","originalKeyword":"脱碳层"},{"id":"25b9cb4b-d824-4ffb-b96d-846cd104b429","keyword":"内氧化","originalKeyword":"内氧化"}],"language":"zh","publisherId":"wlcs201601006","title":"S355J2钢板表面裂纹成因分析及控制","volume":"34","year":"2016"},{"abstractinfo":"对难处理精矿进行了细磨—氰化浸的试验研究。最优工艺条件为:磨矿介质粒径1.6 mm、磨矿时间45 min、氰化浸出矿浆浓度33.33%、氰化钠质量分数0.5%、搅拌浸出48 h。在此试验条件下,浸出率可达93.70%。","authors":[{"authorName":"蓝碧波","id":"e3207d30-f90c-4b8b-bfda-31a27bf08296","originalAuthorName":"蓝碧波"}],"doi":"10.11792/hj20130612","fpage":"48","id":"7ab544bb-ab8b-4a86-a075-acd7f735e5d4","issue":"6","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"5993cc29-3f94-4516-bc32-71cd30435eba","keyword":"难处理精矿","originalKeyword":"难处理金精矿"},{"id":"13a13afe-1f2e-4e32-b130-718b43444d75","keyword":"细磨","originalKeyword":"超细磨"},{"id":"84fad878-afe3-41c8-94d8-349ae79f8af3","keyword":"氰化浸","originalKeyword":"氰化浸金"}],"language":"zh","publisherId":"huangj201306016","title":"细磨-氰化浸试验研究","volume":"","year":"2013"},{"abstractinfo":"介绍了一种由无序树形结构构成的材料的自下而上化学制备方法,这种材料可工作在可见光频段.当树形结构的直径为500nm时,这种纳米树形结构阵列材料分别在470,540,670 nm频段出现透射通带,这种材料也可在可见光频段实现平板聚焦,有益于对可见光频段材料的研究.","authors":[{"authorName":"赵炜","id":"000ae6b5-6314-478e-98b1-f4f0cac6118b","originalAuthorName":"赵炜"},{"authorName":"酒少武","id":"f1d3489e-1cc9-4799-84a1-54e5f73888d8","originalAuthorName":"酒少武"}],"doi":"","fpage":"3037","id":"d758f559-4db8-429e-a3b1-064490e72e22","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b421e9e8-b40a-4bd0-a40d-4b84bae1a147","keyword":"材料","originalKeyword":"超材料"},{"id":"381adf9a-0c7b-4ad9-a712-3520a3b516be","keyword":"可见光频段","originalKeyword":"可见光频段"},{"id":"099d427e-f4db-4529-9609-b817595c6b40","keyword":"平板聚焦","originalKeyword":"平板聚焦"},{"id":"7827eefd-0825-4457-8096-3b17c018da4e","keyword":"树形结构","originalKeyword":"金树形结构"}],"language":"zh","publisherId":"xyjsclygc201512021","title":"基于树形结构单元的材料制备","volume":"44","year":"2015"},{"abstractinfo":"研究了细磨-树脂矿浆法从黄铁矿烧渣中提新工艺.以氧化铝球为研磨介质,考察了磨矿粒度、液固比、磨浸时间、助磨剂、助浸剂等因素对浸出效果的影响.以AM-2b树脂为吸附剂、弱酸性硫脲为解吸剂从氰化矿浆中回收.分别用静态法、动态法考察了时间、温度、酸度、流速等因素对AM-2b树脂吸附金和解吸金的影响.研究结果表明,在适宜的条件下,的回收率可达85%.","authors":[{"authorName":"危俊婷","id":"decedbcd-7470-4ada-8179-716e8246b21f","originalAuthorName":"危俊婷"},{"authorName":"郭炳昆","id":"b0f8d5ad-6b0b-4126-9974-6e57b0f15946","originalAuthorName":"郭炳昆"},{"authorName":"严规有","id":"c6c43ab5-0b57-4476-a87b-f8f71c305b9d","originalAuthorName":"严规有"},{"authorName":"郑先君","id":"82e7b714-33d6-4717-857e-94db55d99cc0","originalAuthorName":"郑先君"}],"doi":"10.3969/j.issn.1001-1277.2002.04.006","fpage":"34","id":"94cf0559-45ae-4ccf-a20c-72b4fdd2e9e1","issue":"4","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"479067ee-fd4b-4c8a-bcc5-09943e7aa673","keyword":"细磨","originalKeyword":"超细磨"},{"id":"a29fd03f-e774-4db3-b8af-df4acea1873c","keyword":"树脂矿浆法","originalKeyword":"树脂矿浆法"},{"id":"6c07324b-e691-4992-8ade-1d4934520064","keyword":"助磨剂","originalKeyword":"助磨剂"},{"id":"99c8e77a-0171-48db-a6bb-45910d8e2917","keyword":"助浸剂","originalKeyword":"助浸剂"},{"id":"fa2d515c-69e2-4e35-b90e-55e3340be261","keyword":"氰化浸出","originalKeyword":"氰化浸出"}],"language":"zh","publisherId":"huangj200204006","title":"细磨-树脂矿浆法从黄铁矿烧渣中回收的研究","volume":"23","year":"2002"},{"abstractinfo":"利用原位还原-种子生长法制备了顺磁纳米壳复合颗粒(SGNs),研究了其粒径调控的方法并对其体外/体内磁共振成像(MRI)和光热治疗(PT)性能进行了测试.结果表明,通过改变Fe3O4的加入量可方便地调控SGNs的粒径,并成功制备了粒径分别为100、150和200 nm的SGNs复合颗粒.这些不同粒径的纳米复合颗粒均具有规则的球形形貌、较窄的粒径分布和单分散性.经巯基-聚乙二醇(SH-PEG)修饰后,不同粒径的复合颗粒(SGNs-PEG)均表现出较强的MRI成像和光热转换能力.其中,粒径为150 nm的复合颗粒对808 nm激光具有最强的吸收能力和光热转换效率,体外和体内可升高温度分别达37℃和25℃,同时具有较优异的MRI成像造影能力.因此,在MDA-MB-435荷瘤小鼠肿瘤部位注射该复合颗粒后,可先对肿瘤部位进行很好的成像诊断,再利用激光照射通过光热转换有效地杀灭肿瘤细胞,这为实现肿瘤诊疗的一体化提供了可能.","authors":[{"authorName":"翟云刚","id":"04670b64-0207-4547-8472-d28ba318e5a5","originalAuthorName":"翟云刚"},{"authorName":"董文杰","id":"4ccdbe94-2539-43db-bf3b-011975e510af","originalAuthorName":"董文杰"},{"authorName":"高勇平","id":"245970c5-141a-4e84-81b8-37c266ac7561","originalAuthorName":"高勇平"},{"authorName":"牛德","id":"c4e41257-8926-4577-839b-2b68770ce049","originalAuthorName":"牛德超"},{"authorName":"陈健壮","id":"aa964e2d-0a49-4a3b-bc23-6d202e4a3782","originalAuthorName":"陈健壮"},{"authorName":"顾楼","id":"28f2549d-4b98-4277-91ba-b4db101fa1e2","originalAuthorName":"顾金楼"},{"authorName":"李永生","id":"7f7a92b8-c253-4648-a2c0-e1fc8f2080ab","originalAuthorName":"李永生"},{"authorName":"施剑林","id":"040ff48b-f4e9-4dc2-b586-bd659377ac8d","originalAuthorName":"施剑林"}],"doi":"10.15541/jim20150077","fpage":"950","id":"9c973a80-9330-4324-9c0c-0e746c8b5b5a","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"463604c7-ef0c-4dac-9023-622c376b61aa","keyword":"四氧化三铁","originalKeyword":"四氧化三铁"},{"id":"452a2640-749d-40e8-ad7d-870e67fc2e4b","keyword":"纳米壳","originalKeyword":"金纳米壳"},{"id":"63568a24-98b3-46ac-8b41-a450aca2c817","keyword":"复合颗粒","originalKeyword":"复合颗粒"},{"id":"15b6fd9c-0008-4881-9657-228be79e649a","keyword":"光热治疗","originalKeyword":"光热治疗"},{"id":"178bae33-3c3d-44f1-9217-9b830f646091","keyword":"磁共振成像","originalKeyword":"磁共振成像"}],"language":"zh","publisherId":"wjclxb201509009","title":"顺磁纳米壳复合颗粒的粒径调控及其诊疗应用","volume":"30","year":"2015"}],"totalpage":775,"totalrecord":7750}