{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"测定了Ti50Ni47Fe3形状记忆合金弹簧升温过程经过马氏体相变、R相变回复力、回复位移的特性曲线.结果表明:Ti50Ni47Fe3弹簧在马氏体相变(-100℃至-70℃)过程,回复性能不明显,而在R相变(-10℃至10℃)过程,回复位移回复力变化显著;Ti50Ni47Fe3弹簧最大的回复位移随约束力的增加而呈非线性增加:约束力为5.2 N,最大回复位移可达2.24 nm;最大的回复力随约束位移的增加亦呈现非线性增加:约束位移为4.4 mm,最大回复力为4.8 N.","authors":[{"authorName":"李波","id":"f9303784-4810-414c-ab17-7952c0556f36","originalAuthorName":"李波"},{"authorName":"刘福顺","id":"c2ce086c-90a1-4387-9ac2-9ef25c0c1b33","originalAuthorName":"刘福顺"}],"doi":"","fpage":"9","id":"6290371e-f798-4e30-b5e7-1c359e562d1b","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"c6bb7217-223b-4fde-8443-837552a9885c","keyword":"Ti50Ni47Fe3记忆合金弹簧","originalKeyword":"Ti50Ni47Fe3记忆合金弹簧"},{"id":"f84d2f33-ec8c-4106-bc4b-839683c177ac","keyword":"回复力","originalKeyword":"回复力"},{"id":"878fd566-c894-4776-a9dc-0b9954f065e5","keyword":"回复位移","originalKeyword":"回复位移"},{"id":"26ff1619-a505-49de-8928-9110c081590a","keyword":"R相变","originalKeyword":"R相变"}],"language":"zh","publisherId":"jsgncl201103003","title":"TiNiFe低温形状记忆合金弹簧回复特性的研究","volume":"18","year":"2011"},{"abstractinfo":"针对SMA电火花加工机器人加工时常用的3种工作介质水、煤油和乳化液,研究了SMA弹簧的记忆恢复变形特性和变形规律.结果表明,对应不同的环境介质,SMA弹簧的记忆回复变形量与驱动电流间存在一一对应关系,通过控制驱动电流可控制记忆回复变形量.在不同环境介质中SMA弹簧的记忆回复变形速度的变化趋势是一致的,都是先随着回复位移的增加而增加,在接近中间段时达到最大,然后随着位移的增加而减小.驱动电流是对SMA弹簧动态变形速度影响最明显的参数,通过选择合适的驱动电流可有效地控制SMA弹簧的回复变形速度.","authors":[{"authorName":"刘永红","id":"b0bca3bc-8612-4680-9be8-19e3c566f3e6","originalAuthorName":"刘永红"},{"authorName":"杨毅","id":"3becb10e-d103-4801-9ab5-c50542f4d8df","originalAuthorName":"杨毅"},{"authorName":"张作龙","id":"429e4794-96ef-4b8b-bbd5-ab52ed0970a5","originalAuthorName":"张作龙"}],"doi":"","fpage":"382","id":"733cef20-d138-427b-b6d4-7aacedc4d8f7","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6bb01c2d-4315-4a7f-a5cf-76629dc3e04c","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"0feb8ac5-dc9b-4564-bcf8-3cdc1d3a87f7","keyword":"环境介质","originalKeyword":"环境介质"},{"id":"90e3fb0c-8088-4122-b8fe-29a61eaa0b5c","keyword":"弹簧","originalKeyword":"弹簧"},{"id":"f8016924-48bb-4e5d-9646-ed3ed7e714ac","keyword":"记忆效应","originalKeyword":"记忆效应"}],"language":"zh","publisherId":"gncl200104016","title":"环境介质对形状记忆合金弹簧记忆回复效应的影响*","volume":"32","year":"2001"},{"abstractinfo":"为了进一步改善瞬态形核率动态再结晶CA模型的动态回复阶段模拟精度,提出了采用应力差闭环控制-黄金搜索法取代唯象的位错密度增量模型来搜索、优化动态回复位错密度增量的方法,通过HPS485wf钢动态再结晶过程仿真和热模拟实验检验了该方法的合理性和应用效果.结果表明,这一方法合理、可行,能优化位错密度增量以提高动态回复阶段和动态再结晶全程的模拟精度和稳定性,较比传统的恒形核率动态再结晶CA模型的动态回复阶段和动态再结晶全程的模拟精度分别提高了98.91%和91.71%,较比瞬态形核率动态再结晶CA模型的动态回复阶段和动态再结晶全程的模拟精度分别提高了95.16%和49.47%.","authors":[{"authorName":"关小军","id":"e67277a7-9935-4ac6-96fa-2f69c224aff9","originalAuthorName":"关小军"},{"authorName":"付杰","id":"19551460-9a43-48e8-a4ff-a5dbac843b20","originalAuthorName":"付杰"}],"doi":"","fpage":"235","id":"27038f3b-70ed-449b-971c-65b58c3e999d","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"0be0d077-cc23-4dec-8da1-98715a6de109","keyword":"动态回复","originalKeyword":"动态回复"},{"id":"336bf42c-c137-474f-a806-9a1c06488962","keyword":"位错密度增量优化","originalKeyword":"位错密度增量优化"},{"id":"8c058d3a-6fb8-41d7-bb2e-0dbfe77523d3","keyword":"元胞自动机","originalKeyword":"元胞自动机"},{"id":"ec7fa4d2-c7dc-4f2d-906d-30093923d635","keyword":"仿真","originalKeyword":"仿真"},{"id":"1d91035b-ed0e-403b-a494-9b13999a14d3","keyword":"流变应力","originalKeyword":"流变应力"}],"language":"zh","publisherId":"jsrclxb201602040","title":"一种优化动态回复阶段位错密度增量的方法","volume":"37","year":"2016"},{"abstractinfo":"采用热模拟实验研究了不同Nb含量的低C高Mn钢在800-900℃变形后奥氏体的回复特征,同时借助Fe-40%Ni-0.1%Nb(质量分数)合金揭示了回复过程中的位错演化及析出行为,建立了位错滑移及溶质拖曳机制的等温回复动力学模型,据此计算拟合了应力松弛曲线上回复实验数据,计算结果与理论分析及实验结果相符.实验及模拟结果表明,Nb溶质拖曳及析出均减慢回复过程,提高变形积累;与Nb溶质拖曳相比,析出能够更有效地延缓回复软化;Nb溶质拖曳通过升高回复激活自由能Uo及减小激活长度来实现回复过程的延缓,提高溶质Nb含量,将升高Uo和减小激活长度.对于含Nb低C高Mn微合金钢,在道次间隔短的多道次热连轧精轧阶段,变形积累主要依靠Nb溶质拖曳作用,而对于轧制节奏较慢的中厚板精轧,轧制变形的积累依靠Nb溶质拖曳与析出的共同作用.","authors":[{"authorName":"聂文金","id":"bb57d8e8-8547-4a17-a58c-bc738ba984a7","originalAuthorName":"聂文金"},{"authorName":"尚成嘉","id":"cb1da363-aee2-4cf9-b6af-3b84faffe23a","originalAuthorName":"尚成嘉"},{"authorName":"吴圣杰","id":"03c851a8-7004-4745-b5f0-6997224b1cd1","originalAuthorName":"吴圣杰"},{"authorName":"施培建","id":"1301aed0-651e-433a-8218-b63e5d371738","originalAuthorName":"施培建"},{"authorName":"程俊杰","id":"bf003fcc-7d26-486f-a5dd-ff9ded19c238","originalAuthorName":"程俊杰"},{"authorName":"张晓兵","id":"9bd3f913-bede-4ad2-bc7e-013820d11772","originalAuthorName":"张晓兵"}],"doi":"10.3724/SP.J.1037.2012.00189","fpage":"775","id":"f99fbb88-e100-40ef-a92d-9086ae4e3d5a","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7ffe10e9-eae5-4ea0-80a0-8fe15d296240","keyword":"Nb微合金化钢","originalKeyword":"Nb微合金化钢"},{"id":"709d6d08-f9d3-4233-ad36-c4cc894c1e0a","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"8510e9ae-4939-45c6-addb-5d8865ae7b40","keyword":"回复","originalKeyword":"回复"},{"id":"1dbf80d1-b764-47f1-b474-1ed1e1f1885a","keyword":"溶质拖曳","originalKeyword":"溶质拖曳"},{"id":"04280cdf-95d0-4675-aa16-5b2234a7e6db","keyword":"形变积累","originalKeyword":"形变积累"}],"language":"zh","publisherId":"jsxb201207002","title":"Nb对奥氏体热变形后等温回复的影响","volume":"48","year":"2012"},{"abstractinfo":"对25#变压器油和普通纤维素绝缘纸板组成的油纸绝缘样品进行回复电压实验,研究了不同充电时间下回复电压最大值、初始斜率、中心时间常数等3个回复电压特征参数与老化特征气体CO和CO2含量的变化规律.结果表明:随着老化程度的增加,回复电压各特征参数与CO含量呈对数函数关系,与CO2含量呈线性关系.","authors":[{"authorName":"王林","id":"0879a9ed-8dc5-4140-b321-c385471a2b8d","originalAuthorName":"王林"},{"authorName":"彭倩","id":"2357ad52-e589-47f2-af81-a3140f7b786d","originalAuthorName":"彭倩"},{"authorName":"周利军","id":"a9a97088-d6bb-47f5-a25e-2b188b1f1119","originalAuthorName":"周利军"},{"authorName":"姚晓","id":"b0b2fc85-5605-4238-acc5-79ad30fe254d","originalAuthorName":"姚晓"},{"authorName":"赵赢峰","id":"86e0302c-7ae9-4f43-a4a5-8dcb0639342f","originalAuthorName":"赵赢峰"},{"authorName":"甘德刚","id":"a764f224-06f8-4879-8a7a-85904ddef412","originalAuthorName":"甘德刚"}],"doi":"","fpage":"42","id":"0ad6d368-68de-424a-8ac7-d532177ccada","issue":"5","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"9965cc87-389b-4513-abd6-0ac506650408","keyword":"油纸绝缘","originalKeyword":"油纸绝缘"},{"id":"e684f22b-5975-453c-bd5b-2a7b837cb761","keyword":"电介质响应","originalKeyword":"电介质响应"},{"id":"406f84a5-4969-4ff9-8cf7-c2dc84020475","keyword":"回复电压","originalKeyword":"回复电压"},{"id":"a9aaf54c-3604-4086-958b-fea6e5d13414","keyword":"老化","originalKeyword":"老化"},{"id":"bcefd61f-eb4f-4781-89fd-234f7e71bd2f","keyword":"中心时间常数","originalKeyword":"中心时间常数"},{"id":"87762a06-d25a-42be-b76a-7d866b14756e","keyword":"油中溶解气体","originalKeyword":"油中溶解气体"}],"language":"zh","publisherId":"jycltx201205013","title":"油纸绝缘老化特性的回复电压分析","volume":"","year":"2012"},{"abstractinfo":"通过利用波尔圆轨道模型,研究了纸介质材料在外场作用下的极化机理和纸介质材料电子位移极化规律,推导出了纸介质材料的相对介电常数εr和折射率n的数学表达式,讨论了影响纸介质er和n的有关因素.","authors":[{"authorName":"孙立蓉","id":"f5572ad4-adc6-4f48-b96f-0dbcdd222048","originalAuthorName":"孙立蓉"},{"authorName":"王华军","id":"8cbc7be7-7814-40ed-9e0e-8cb6bf181f9c","originalAuthorName":"王华军"}],"doi":"10.3969/j.issn.1009-9239.2005.04.005","fpage":"17","id":"997aefe2-7ed8-45d5-a1d8-91ecbeede231","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"83ee67ad-8a92-476a-9e29-1a84754bb62b","keyword":"电子位移极化","originalKeyword":"电子位移极化"},{"id":"b457a891-ff4a-443e-b989-f7e0d16bc113","keyword":"相对介电常数","originalKeyword":"相对介电常数"},{"id":"95b128f0-f873-498f-a25c-df61dd1f47fe","keyword":"纸的折射率","originalKeyword":"纸的折射率"}],"language":"zh","publisherId":"jycltx200504005","title":"纸介质材料电子位移极化理论","volume":"38","year":"2005"},{"abstractinfo":"把不同温度下的裂纹张开位移(CTOD)试验数据,用灰色理论中的累加方法,进行二次累加.可以使一组没有规律的数据,成为一条光滑的曲线.然后利用回归理论中的多项式模拟曲线,对其试验数据进行了预测,提出根据试验数据确定出预测数据的可能的区间范围.计算实例表明,其预测精度较高.","authors":[{"authorName":"刘长虹","id":"eae8a293-8393-45bd-966e-936b0e16750b","originalAuthorName":"刘长虹"}],"doi":"10.3969/j.issn.1000-3738.2005.07.008","fpage":"25","id":"d807cdf2-3fa8-425e-910c-0559f0671947","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"177fe816-539c-485e-bd08-3798c581607f","keyword":"裂纹张开位移","originalKeyword":"裂纹张开位移"},{"id":"e47638e7-d1e2-48e9-87a7-fca2d044009c","keyword":"灰色理论","originalKeyword":"灰色理论"},{"id":"bb090107-364d-43bf-a0b3-7824d39f3d72","keyword":"预测","originalKeyword":"预测"}],"language":"zh","publisherId":"jxgccl200507008","title":"裂纹张开位移的预测方法","volume":"29","year":"2005"},{"abstractinfo":"桶型位移器是高速处理器的常用部件,可在单周期内对数据字实现指定位数的位移操作,在量子可逆逻辑电路的基础上,提出了有n个输入位和m个控制位的位移器,记为(n,m)位移器.为综合可逆的位移器,提出了基于置换群分解的新方法,仅使用(3,1)位移器与控制交换门,快速生成较小量子代价的任意控制位移器,可将最小的k个相应的(n,1)位移器级联,生成可任意位移的(n,南)桶型位移器.","authors":[{"authorName":"李志强","id":"e4df5bf4-7b92-4cf3-b580-a20336a6663f","originalAuthorName":"李志强"},{"authorName":"冯小霞","id":"16adc8dc-34d0-4664-a232-8381f9918cd4","originalAuthorName":"冯小霞"},{"authorName":"陈汉武","id":"7b7f1210-031d-4da0-beda-1e9fc40798b3","originalAuthorName":"陈汉武"}],"doi":"10.3969/j.issn.1007-5461.2014.06.013","fpage":"720","id":"e040b3b8-6020-4bcc-8ad5-bc6b15b69e49","issue":"6","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"0cf6d565-5681-4754-9e35-c9fca9188947","keyword":"量子光学","originalKeyword":"量子光学"},{"id":"25d3639f-b46a-4fc1-8601-2477674b288f","keyword":"量子电路","originalKeyword":"量子电路"},{"id":"dc439a2d-8631-481d-b837-e418985b1d97","keyword":"桶型位移器","originalKeyword":"桶型位移器"},{"id":"9ae80c93-bfe8-42e1-890e-17a45bb191e4","keyword":"置换群分解","originalKeyword":"置换群分解"},{"id":"274aa993-b796-48bb-bbdd-8601378a09d8","keyword":"量子代价","originalKeyword":"量子代价"},{"id":"739eea1d-2982-43ec-a548-25bc3c798867","keyword":"电路综合","originalKeyword":"电路综合"}],"language":"zh","publisherId":"lzdzxb201406013","title":"基于量子可逆逻辑的桶型位移器设计","volume":"31","year":"2014"},{"abstractinfo":"理论地综合分析了奥氏体转变为马氏体过程中原子的移动方式.奥氏体转变为马氏体时,在相变驱动力的作用下,原子主要是按照K-S位向关系从奥氏体晶格中直接转移到马氏体晶格上去的.当γ→α马氏体时,以晶体缺陷为起点出现涨落,原子无扩散,集体协同位移,进行了菱形参数的调整,完成了γfcc→αbcc-M的晶格重构.原子移动距离远远小于一个原子间距,比K-S切变位移小1个数量级,耗能少.γ→α转变产生应变能.为了调整应变能和适应晶格匹配,形成相变位错、层错或相变孪晶等缺陷,以完成马氏体转变.","authors":[{"authorName":"刘宗昌","id":"bce4fef6-3a82-4993-8471-6b995c8c2951","originalAuthorName":"刘宗昌"},{"authorName":"计云萍","id":"c56c58c5-9997-4368-8ef1-227933383202","originalAuthorName":"计云萍"},{"authorName":"任慧平","id":"32f496dd-e7f4-4eb3-b78f-f81b56d8146a","originalAuthorName":"任慧平"}],"doi":"","fpage":"86","id":"69ee0598-f8f9-4248-8eda-6dd638ba024d","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dbe6124e-774d-4e52-bf74-8dd32561dd0e","keyword":"马氏体相变","originalKeyword":"马氏体相变"},{"id":"da10ab07-3325-4b1d-83e9-715cf8ff9a39","keyword":"无扩散","originalKeyword":"无扩散"},{"id":"2890a102-50c8-4670-81be-a38b8277bbf6","keyword":"晶格参数","originalKeyword":"晶格参数"},{"id":"a9e98393-2d79-448b-8cfd-90343764e4b3","keyword":"应变能","originalKeyword":"应变能"},{"id":"3abd476b-ab52-4326-a5ad-0c7673e70b8a","keyword":"集体协同位移","originalKeyword":"集体协同位移"}],"language":"zh","publisherId":"cldb201312021","title":"马氏体相变时原子的位移","volume":"27","year":"2013"},{"abstractinfo":"位移传感器对于保证热轧机的轧制精度有重要作用.介绍了位移传感器的原理、控制系统的检测方法以及位移系统在轧机中的应用等.通过改造,位移传感器成功安装在某中试工厂400 mm热轧机上.一段时间的运行表明,位移传感器工作稳定,完全满足带钢轧制的要求.","authors":[{"authorName":"邱碧涛","id":"b297b5c2-71eb-40e5-a130-7f03cd4e8290","originalAuthorName":"邱碧涛"},{"authorName":"郑汉城","id":"22dfebd5-16e9-49d0-8afe-1bc0b26872b6","originalAuthorName":"郑汉城"},{"authorName":"陈子宏","id":"7161d7c3-d3bf-45a5-82d3-858e86220867","originalAuthorName":"陈子宏"},{"authorName":"陈长松","id":"be83f088-ea63-4dcb-b6c1-6ff3c03dd9b0","originalAuthorName":"陈长松"}],"doi":"","fpage":"46","id":"3a031385-4f88-41e8-ab73-c2beec61a8e9","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"6de6cf21-9c88-41ef-94ac-ba5f78a7f8ae","keyword":"位移传感器","originalKeyword":"位移传感器"},{"id":"6f8611e3-9e66-418e-8089-8f1b1fc305e4","keyword":"控制精度","originalKeyword":"控制精度"},{"id":"efaf5b7d-871e-4cd7-971f-e60674d644b2","keyword":"热轧机","originalKeyword":"热轧机"}],"language":"zh","publisherId":"gtyj201102012","title":"位移传感器在热轧机中的应用","volume":"39","year":"2011"}],"totalpage":220,"totalrecord":2191}