{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了深入理解三维正交机织复合材料(3DOWC)疲劳性能,改进材料抗疲劳设计,结合三维正交机织复合材料试样经纱方向准静态三点弯曲及60%应力水平下的三点弯曲疲劳实验与ABAQUS有限元软件,构建了全尺寸三维实体模型,研究了三维正交机织复合材料在低周循环载荷下的弯曲疲劳性能,经分析得到循环加载下模型应力分布情况和疲劳损伤形态.结果表明:经纱为材料最重要的承载部件,中间加载区域为材料应力集中区,损伤主要位于应力集中区的Z纱通道处的经纱上,随着循环增加,逐渐在中心加载区域的上部和下部形成三角形损伤区域,该研究在复合材料设计与优化中具有指导意义.","authors":[{"authorName":"汪金花","id":"bf2ff879-fa70-492e-a43d-b02d3cf1c3c2","originalAuthorName":"汪金花"},{"authorName":"方芳","id":"5845acdb-8f91-467d-874a-31bd6a375d43","originalAuthorName":"方芳"},{"authorName":"杨格","id":"33a7b9de-215b-4ea2-9dad-982591765046","originalAuthorName":"杨格"},{"authorName":"吴利伟","id":"2918afbf-8456-4ba8-b028-04f8db1f96fa","originalAuthorName":"吴利伟"},{"authorName":"","id":"22030784-7d55-45b1-bacb-6438fe1ed36f","originalAuthorName":"孙宝忠"}],"doi":"","fpage":"797","id":"ae06744f-3493-46ef-bf78-fedbe58149df","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"971f45eb-f864-4b76-b7e4-bc67f1de2aee","keyword":"三维正交机织复合材料","originalKeyword":"三维正交机织复合材料"},{"id":"09118a5a-5fe6-4c31-a923-62986bb879ed","keyword":"低周弯曲疲劳","originalKeyword":"低周弯曲疲劳"},{"id":"78adf133-ba8b-465f-b2c2-dd9d41c64564","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ef7d676b-ac8c-4b7a-b304-9d3198f4dfdc","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"a0848b88-5970-4d29-ab1d-bc37c0b816b6","keyword":"应力分布","originalKeyword":"应力分布"},{"id":"757f6120-3d73-4621-ac5f-6a7c88fc2385","keyword":"疲劳损伤","originalKeyword":"疲劳损伤"}],"language":"zh","publisherId":"fhclxb201403035","title":"三维正交机织复合材料低周弯曲疲劳力学性能有限元模拟","volume":"31","year":"2014"},{"abstractinfo":"针对传统个体防护材料刚硬、限制人体活动的缺点,设计了2种柔性复合材料:剪切增稠液(STF)和硅橡胶填充经编间隔织物(WKSF)柔性复合材料,并对其冲击性能进行研究.WKSF具有上、下两个表层和间隔丝构成的间隔层,在其间隔层中加入STF和硅橡胶2种柔性材料.STF采用将纳米SiO2分散于聚乙二醇(PEG)中制成,硅橡胶采用硅胶和固化剂混合而成.采用流变仪对STF的流变性能进行测试,采用Instron落锤冲击仪对WKSF及其复合材料的冲击性能进行测试.实验表明:STF在达到临界剪切速率后出现剪切增稠现象,纯织物的冲击过程可分为弹性、平台和压实3个阶段,且具有明显的平台阶段;经填充后所制成的2种复合材料的冲击过程与纯织物明显不同,其载荷-位移曲线呈线性;加入硅橡胶的复合材料刚度较大,没有应变率效应;加入STF的复合材料具有较好的能量吸收性能和明显的应变率效应.","authors":[{"authorName":"陆振乾","id":"19ad708d-1ff2-4d39-ba07-a9a78bb954b7","originalAuthorName":"陆振乾"},{"authorName":"吴利伟","id":"ac4b1b25-a289-4547-9996-3efeee7a808b","originalAuthorName":"吴利伟"},{"authorName":"","id":"f27ed785-0cae-48ef-ac20-52f82934d22d","originalAuthorName":"孙宝忠"},{"authorName":"顾伯洪","id":"35e99773-7e3a-4f7b-9554-30c98c74ec53","originalAuthorName":"顾伯洪"}],"doi":"","fpage":"1306","id":"66d9e840-c7de-43d8-ac83-e9bd567b4ce2","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"fb10c76c-cfb6-4cf9-8c56-e40ffee0dd33","keyword":"经编间隔织物","originalKeyword":"经编间隔织物"},{"id":"0a37c2f0-f491-4808-8fc2-c7facd6a9e62","keyword":"剪切增稠液","originalKeyword":"剪切增稠液"},{"id":"a4e1e2ee-7570-47ff-9925-278baf9c6fc4","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"1899e49e-daf9-4c80-94b0-3641c9b1e156","keyword":"柔性复合材料","originalKeyword":"柔性复合材料"},{"id":"6f8e075e-2071-4c70-92cc-c8649ed7ae15","keyword":"冲击性能","originalKeyword":"冲击性能"}],"language":"zh","publisherId":"fhclxb201405027","title":"经编间隔织物增强柔性复合材料冲击性能","volume":"31","year":"2014"},{"abstractinfo":"研究了三维编织玄武岩长丝纤维束增强环氧树脂复合材料在23、60、90、120、150、210℃温度场下和不同应变率范围(1 300~1 600、1 600~2 000、2 000~2 300 s-1)内的面外/面内冲击压缩响应特征.结果表明:试验温度高于或低于树脂玻璃化温度决定面外/面内冲击压缩的应力-应变曲线走势特征,即使试验条件(温度和气压)一致,面外冲击压缩与面内冲击压缩应力-应变曲线也存在较大差异.温度和应变率对压缩模量、峰值应力、破坏应变、比能量吸收均有不同程度影响.面外和面内压缩的破坏模式存在较大差异,受温度效应和应变率效应影响.","authors":[{"authorName":"潘祥","id":"40e59c54-5418-4520-ae78-8d512d3a66ce","originalAuthorName":"潘忠祥"},{"authorName":"","id":"88dfa6e8-d946-48ad-ad34-0ac6343f1fe4","originalAuthorName":"孙宝忠"}],"doi":"10.13801/j.cnki.fhclxb.20140627.002","fpage":"395","id":"9b7019d1-5d4d-45ee-aeb8-26f0867525c4","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"c4d67579-ea82-49ec-b0a9-7d6895d6c862","keyword":"三维编织复合材料","originalKeyword":"三维编织复合材料"},{"id":"ea0b5324-bac3-4f62-821d-92dc7895f482","keyword":"温度场","originalKeyword":"温度场"},{"id":"e63ca353-c153-4ea3-b5f2-e9ebe693ca00","keyword":"高应变率","originalKeyword":"高应变率"},{"id":"595cdbd6-7fba-44bd-9e71-613202cb7109","keyword":"冲击","originalKeyword":"冲击"},{"id":"7af12342-5008-4472-a7f3-1bdf30390745","keyword":"压缩","originalKeyword":"压缩"}],"language":"zh","publisherId":"fhclxb201502012","title":"三维编织玄武岩/环氧树脂复合材料在温度场下的高应变率压缩试验","volume":"32","year":"2015"},{"abstractinfo":"研究了三维正交机织玄武岩/环氧树脂复合材料在180℃高温环境下老化不同时间后的低速冲击力学性能,测试得到了不同老化时间的试样在低速冲击过程中的载荷-位移曲线.研究发现:随着老化时间增加,三维正交机织玄武岩/环氧树脂复合材料能承受的最大载荷下降,位移逐渐增加,载荷-位移曲线斜率逐渐下降;随着冲击能量增加,老化条件相同的三维正交机织玄武岩/环氧树脂复合材料试样最大承受载荷增大,位移和曲线斜率增加.对高温老化后三维正交机织玄武岩/环氧树脂复合材料试样进行SEM观察,发现纤维与树脂基体脱粘有裂纹产生,且裂纹数目和面积随着老化时间延长而增加.","authors":[{"authorName":"左翠平","id":"f9e24ad5-4930-4ce2-a0fc-7fd54c4a5668","originalAuthorName":"左翠平"},{"authorName":"","id":"ca634261-9ac8-48b3-b7d3-379bd31a1b51","originalAuthorName":"孙宝忠"}],"doi":"10.13801/j.cnki.fhclxb.20150623.002","fpage":"545","id":"f44f694f-3fb1-4853-beca-81914478cea2","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"eaf1c001-3ff8-4da7-932f-0a7683d28c64","keyword":"三维正交机织玄武岩/环氧树脂复合材料","originalKeyword":"三维正交机织玄武岩/环氧树脂复合材料"},{"id":"3f0dd3b4-c0df-4f9d-856c-4dc92ecccc12","keyword":"高温老化","originalKeyword":"高温老化"},{"id":"6669372b-8d22-4d2d-b98b-3a5e5d2c06b5","keyword":"低速冲击","originalKeyword":"低速冲击"},{"id":"14882f3a-ce8d-4ae2-869c-79fbb90c770f","keyword":"SEM","originalKeyword":"SEM"},{"id":"ac390a8e-cd07-4cb3-9827-0cbdccf23509","keyword":"裂纹","originalKeyword":"裂纹"}],"language":"zh","publisherId":"fhclxb201603013","title":"三维正交机织玄武岩/环氧树脂复合材料高温老化后低速冲击性质","volume":"33","year":"2016"},{"abstractinfo":"采用50D中空涤纶长丝埋入复合材料,模拟复合材料的孔隙,制备孔隙率标准试块。通过制备三种厚度(1.5,3.0和5.0mm)和五种孔隙率(0~5.76%)的碳纤维增强环氧树脂复合材料,采用超声C扫描测定不同孔隙率下复合材料的超声衰减,并和波音公司的标准试块进行了对比。研究了涤纶排列密度和在厚度方向上的排列位置对复合材料超声衰减的影响。结果表明,制备的标准试块和波音公司标准试块具有良好的一致性,用涤纶中空纤维模拟复合材料的孔隙率是可行的;随着涤纶排列密度的增加,孔隙率增加,超声衰减增加;在孔隙率不变的情况下,涤纶分布在不同的厚度位置上时,其复合材料的超声衰减基本一致。","authors":[{"authorName":"刘奎","id":"9ff88ff6-69c9-4748-a323-24e20be934a9","originalAuthorName":"刘奎"},{"authorName":"周晖","id":"bdbea476-8ecb-4e87-bfa4-d6a564d02cd3","originalAuthorName":"周晖"},{"authorName":"潘利剑","id":"e7261e65-4219-4aec-aecf-d54d365bc37a","originalAuthorName":"潘利剑"},{"authorName":"","id":"40168e78-4aa7-4243-86f8-a2fedae4eb46","originalAuthorName":"孙宝忠"}],"doi":"10.13801/j.cnki.fhclxb.20160330.001","fpage":"91","id":"e0c18f63-c20e-4fd9-b76e-d515b85cbe0b","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"b854f475-3b4c-490b-a0a0-4b36f5c1e222","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"e7c0fab0-978d-46b1-a57d-7e513c98863d","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"afe9454b-0a31-4f9e-93cd-f4de83046222","keyword":"超声检测","originalKeyword":"超声检测"},{"id":"cdce1731-037d-4659-bd43-bbabca02b75f","keyword":"涤纶长丝","originalKeyword":"涤纶长丝"},{"id":"026ac25b-439f-4589-8285-ecff609233f4","keyword":"标准试块","originalKeyword":"标准试块"}],"language":"zh","publisherId":"fhclxb201701012","title":"内埋中空纤维法制备复合材料孔隙率标准试块的超声衰减特性","volume":"34","year":"2017"},{"abstractinfo":"将光纤布拉格光栅(Fiber Bragg Grating,简称“FBG”)传感器分别埋入单向板和平纹机织层压复合材料中,采用Sm125型光纤光栅解调仪测试两种复合材料在20~100℃温度范围内的内部热应变,分析单向板和平纹机织层压复合材料在仅受温度作用下内部热应变变化特征.结果表明,FBG传感器可以准确测量复合材料内部热应变变化;单向板和平纹机织层压复合材料的内部热应变均随温度升高而增大;织物结构影响复合材料内部热应变,且同一温度点,平纹机织层压复合材料内部热应变较单向板大.","authors":[{"authorName":"贾卫芳","id":"63194782-2154-466d-a71f-86d9a12a812c","originalAuthorName":"贾卫芳"},{"authorName":"","id":"00d7b2d2-6f61-4925-9d68-aad4ab458c19","originalAuthorName":"孙宝忠"}],"doi":"","fpage":"75","id":"8f3109dd-fba9-4436-9db5-f7210a6a4ce7","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"27139326-491c-4bf9-b915-856d5543e4b5","keyword":"碳纤维复合材料","originalKeyword":"碳纤维复合材料"},{"id":"abeb464e-64f7-4fb1-87ea-6a41a4831b6b","keyword":"FBG传感器","originalKeyword":"FBG传感器"},{"id":"77517e28-2685-403d-a9ef-46d9647b4155","keyword":"内部热应变","originalKeyword":"内部热应变"}],"language":"zh","publisherId":"blgfhcl201602014","title":"基于FBG传感器的碳纤维复合材料内部热应变监测","volume":"","year":"2016"},{"abstractinfo":"设计并加工了气囊法成型复合材料圆管的不锈钢模具,并利用硅橡胶圆管作为加压气囊,制备了不同工艺间隙条件下的碳纤维复合材料圆管.利用金相显微镜观察了圆管横截面的微观形貌,对圆管的压缩性能进行了测试,并与同种材料和固化制度条件下热压罐成型平板的压缩强度进行了比较.结果表明,工艺间隙与圆管设计壁厚比值为34%时,圆管的成型质量最好,管壁的单层厚度相对较小且比较均匀,管壁内部缺陷较少,压缩强度为634MPa,与热压罐成型平板的压缩强度647MPa相当;工艺间隙增大后,成型质量逐步变差,压缩强度逐步下降,工艺间隙比值为86.7%时,出现了明显的分层和孔隙缺陷,且单层厚度明显偏大且不均匀,圆管的压缩强度下降到427MPa,相比最高值下降34%左右;工艺间隙减小后,成型质量和压缩强度也出现减小的趋势,但减小幅度相对不大.","authors":[{"authorName":"王英男","id":"4c0e1445-377b-4958-b0bb-6571b1c232bd","originalAuthorName":"王英男"},{"authorName":"潘利剑","id":"f00615dd-44b4-450b-a0ca-39dbf7d0e80e","originalAuthorName":"潘利剑"},{"authorName":"刘国峰","id":"848aced6-3ba7-4b76-9428-d9f37cc446f7","originalAuthorName":"刘国峰"},{"authorName":"胡秀凤","id":"2b491e6d-7274-45a7-8c1a-f0c606edb1ab","originalAuthorName":"胡秀凤"},{"authorName":"刘卫平","id":"59ff150b-cf92-468b-8548-93f4b5b7506e","originalAuthorName":"刘卫平"},{"authorName":"","id":"9cb048b5-5647-45d5-8046-73fd3ec3d580","originalAuthorName":"孙宝忠"}],"doi":"","fpage":"87","id":"24f2c87c-c3c9-4dbb-9cdc-481fc89181b9","issue":"8","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"477b8a95-28d9-45a0-8c4b-d35d504385e5","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"c24ac9a5-ed95-464d-9d84-4e899cf429d5","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"9afcb183-320f-4343-a66b-c948c0879081","keyword":"气囊法","originalKeyword":"气囊法"},{"id":"f1d20c43-6ef1-4782-8578-0e1c197d7b5c","keyword":"圆管","originalKeyword":"圆管"},{"id":"3569e22c-ff5d-4e90-a30f-12fa40d9e6d4","keyword":"工艺间隙","originalKeyword":"工艺间隙"}],"language":"zh","publisherId":"blgfhcl201608016","title":"工艺间隙对气囊法成型复合材料圆管性能影响","volume":"","year":"2016"},{"abstractinfo":"马虎沟测区位于灵北断裂带下盘,区内主干断裂为前家—洼家断裂,发育似斑状郭家岭型花岗闪长岩和玲珑型片麻状黑云母花岗岩. 本次地表构造地球化学测量范围约15 km2 ,采集构造地球化学样品共858件,测试元素包括Au、Ni、Pb、Co、Mo、Sn、Zn、Ti、Cr、As、Sb、Hg、Ag、Cu、Ba、Bi、B、Mn、V等19种. Au元素异常沿前家—洼家断裂带及次级断裂分布特征明显. 分形分维统计表明,Au具有多阶段成矿的特征. 结合多元统计分析,厘定本测区构造地球化学异常找矿标志为Au-Pb-Bi元素组合异常及因子得分Y(i,2)和Y(i,3)异常. 结合地质分析,圈定找矿靶区5处.","authors":[{"authorName":"祝涛","id":"d87cfdbb-d220-4cb9-8426-f320167f9456","originalAuthorName":"祝涛"},{"authorName":"杨斌","id":"1d417931-fdd7-42e2-9013-b63c775244b0","originalAuthorName":"杨斌"}],"doi":"10.11792/hj20160103","fpage":"9","id":"a5cda7a4-a416-4d7a-a1fe-6ba6019f42a3","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"d52aaa44-4bef-429b-abb6-5fb51c9e7876","keyword":"找矿预测","originalKeyword":"找矿预测"},{"id":"ba34116e-33b4-4e40-b1a4-18c7f3563a5e","keyword":"构造地球化学","originalKeyword":"构造地球化学"},{"id":"bc66191e-c1c4-431b-beee-3c43a947083a","keyword":"多元统计分析","originalKeyword":"多元统计分析"},{"id":"bd626c5c-05ff-4c78-a90c-4eb7ed36e1c4","keyword":"前家—洼家断裂带","originalKeyword":"前孙家—洼孙家断裂带"}],"language":"zh","publisherId":"huangj201601003","title":"胶西北前家—洼家断裂带构造地球化学找矿预测","volume":"37","year":"2016"},{"abstractinfo":"对浪油田污水处理系统污水水质、腐蚀挂片等数据分析,结果表明,该污水处理系统腐蚀严重.为了确定腐蚀影响因素,进行了污水流速、温度、pH等因素对腐蚀速率影响的试验研究.初步确定了这些因素对浪油田污水腐蚀影响规律,为日后制定防腐蚀措施可以提供参考.","authors":[{"authorName":"刘丽玲","id":"25b3f8ed-869e-4d75-8946-52e5217933da","originalAuthorName":"刘丽玲"},{"authorName":"袁国翠","id":"53906802-a129-40f9-83b2-550b1b18fdb4","originalAuthorName":"袁国翠"},{"authorName":"牛耀玉","id":"6b42f3c0-4bc1-4d02-8818-bebc10fa1b31","originalAuthorName":"牛耀玉"},{"authorName":"田超","id":"5eaf9853-28cb-4650-9e7c-c865c5fb6e44","originalAuthorName":"田超"}],"doi":"","fpage":"517","id":"869d48db-4411-40f3-a58c-d958b35f7ec0","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"88ed300e-7f34-4a91-9958-86f8114b6f10","keyword":"污水","originalKeyword":"污水"},{"id":"785607a0-8539-4dab-91b8-4ea047772294","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"7bc2f273-9bad-49ad-8683-359e6c721d02","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"fsyfh201405028","title":"浪油田污水腐蚀影响因素","volume":"35","year":"2014"},{"abstractinfo":"回顾了2004年钛股份的生产经营情况,并介绍了近期中国钛行业所面临的问题,简述了钛股份的\"十一五\"发展战略及相应的策略.","authors":[],"doi":"","fpage":"11","id":"37912c38-bd7f-4236-b905-9d1ab7fa0fbe","issue":"5","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"9819030b-e7a6-4dd1-bcb0-518281128673","keyword":"钛股份","originalKeyword":"宝钛股份"},{"id":"10509297-089a-4af3-9569-25a53db9973c","keyword":"2004年","originalKeyword":"2004年"},{"id":"c5eb2bd9-1497-4814-8dbe-8e690212e496","keyword":"经营","originalKeyword":"经营"},{"id":"5ccc63c7-dfd4-4225-a6e1-8bf3804ec32a","keyword":"展望","originalKeyword":"展望"}],"language":"zh","publisherId":"tgyjz200505005","title":"钛股份的2004年及2010年展望","volume":"22","year":"2005"}],"totalpage":11,"totalrecord":101}