赵运才
,
刘宗阳
,
杨雷雷
表面技术
doi:10.16490/j.cnki.issn.1001-3660.2015.12.011
目的 获得电火花沉积质量较好的Ni201 修复层. 方法 运用电火花沉积技术,采用DHD-6000型电火花沉积设备在Q235 钢表面制备Ni201 修复改性层,利用电子扫描显微镜( SEM )、能谱仪( EDS)、X射线衍射( XRD)等检测方法,研究修复层与基体结合界面的微观结构、元素分布、相组成以及修复层表面残余应力. 结果 Ni201修复层组织均匀致密,基体与修复层之间发生元素扩散;修复层结合界面处主要由Fe10. 8Ni、γ( Fe,Ni)固溶体、CoFe15. 7及Fe相组成;Ni201修复层表面残余应力随能量输出幅度的增加而增大,在40%与45%能量输出条件下,残余应力分别为-38. 1,-81. 6 MPa,残余应力较小. 结论 Q235钢基体与Ni201修复层元素相互扩散,基体与修复层之间形成了冶金结合,Ni201修复层为冶金结合层. 再制造修复设备工艺参数选择是决定修复层质量的关键因素,能量输出幅度为40%的修复层质量优于能量输出幅度为45%.
关键词:
电火花沉积
,
再制造
,
Q235钢
,
修复层
,
界面行为
,
残余应力
黄书林
,
杨屹
,
杨刚
,
刘剑
,
周宇
中国表面工程
doi:10.11933/j.issn.1007-9289.2016.06.018
利用羟基硅酸盐减磨、再生的摩擦学特性,通过机械摩擦磨损诱导金属(45钢)表面生成一层再生层.用扫描电子显微镜表征再生层的厚度,并用能谱分析仪和X射线光电子能谱仪分析再生层的元素组成和化学状态,用维氏硬度仪和洛氏压痕法测试其显微硬度和表层结合力.结果显示:当添加剂羟基硅酸盐质量分数为10.5%时,金属磨损量最小,再生层厚度最大;再生层主要含有C、O、Fe、Cr等4种元素,这些元素以石墨碳和金属氧化物形式存在;对再生层进行力学性能测试,再生层维氏硬度为648.8 HV0.3,为基体的1.7倍;表层结合力临界载荷Pc约为150kg,与基体结合性能好.
关键词:
羟基硅酸盐
,
摩擦磨损
,
润滑脂
,
再生层
,
厚度