{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍生产加工锆粉最常用的方法--氢化-脱氢法.金属锆(粉)在一定温度下便开始与氢气发生剧烈的反应,当含氢量大于2.3%时,产物疏松,易于粉碎成细小颗粒的氢化锆粉,氢化锆粉经过大约500℃以上的温度.开始脱氢直至1000℃左右的温度,脱氢基本结束,可得到锆粉.对氢化-脱氢法生产锆粉过程中的温度、压力等做了概要的分析.试验证明,锆中氢含量随温度的升高逐渐降低,在800℃时氢化锆出现吸热峰迅速分解,锆的氢化反应温度区间为400~800℃,脱氢反应温度区间大约为800~1000℃.氢化脱氢法实际上是一种将海绵锆、边角锆、废锆屑等加工成锆粉的生产工艺,没有除杂的作用,因此氢化脱氢法生产的锆粉,其杂质主要取决于原料自身的纯度,如果严格注意操作中的环节,只会引入少量的氧、氢或碳等杂质,试验证明,要得到低氢含量的锫粉,需要较高的真空度和脱氢温度,但是温度要适度,否则会使锆粉末烧结,锆粉经过氢化后,其含氢量一般在3.8%±0.2%.对于相同原料制取的锆粉,粒度越细,其含氧量越高.","authors":[{"authorName":"张恒","id":"96474e36-b0a0-4d72-ac90-67275fd762a4","originalAuthorName":"张恒"},{"authorName":"沈化森","id":"19bdcde6-086d-4ecd-8584-4e20217fcc92","originalAuthorName":"沈化森"},{"authorName":"车小奎","id":"86445b37-2393-4191-a137-00de51088358","originalAuthorName":"车小奎"},{"authorName":"王力军","id":"a5e5fa5b-1b81-4f0b-88ae-5456cf8a2719","originalAuthorName":"王力军"}],"doi":"10.3969/j.issn.0258-7076.2011.03.018","fpage":"417","id":"b059f0b8-84e9-43f4-a8c1-622b9d41de3e","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"9aed81e1-1266-4d5f-885a-7470806d0293","keyword":"氢化-脱氢法","originalKeyword":"氢化-脱氢法"},{"id":"98480c01-66e0-4331-bfa4-80d3aaf7ccf9","keyword":"温度","originalKeyword":"温度"},{"id":"85343283-e9f8-4c3e-bd81-6fa9067a17b2","keyword":"压力","originalKeyword":"压力"}],"language":"zh","publisherId":"xyjs201103018","title":"氢化-脱氢法制备锆粉工艺研究","volume":"35","year":"2011"},{"abstractinfo":"介绍了生产加工钛粉最常用的方法--氢化脱氢法.金属钛(粉)在一定温度下便开始与氢气发生剧烈的反应,当含氢量大于2.3%时,产物疏松,易于粉碎成细小颗粒的氢化钛粉,氢化钛粉经过大约700 ℃左右的温度,将其分解以及将钛粉中固溶的大部分氢除去,可得到钛粉.从热力学原理、脱氢曲线,差热分析、平衡分压与氢气的关系等方面对氢化脱氢法做了概要的分析.试验证明,钛中氢的含量随温度的升高逐渐降低,在680 ℃时氢化钛出现吸热峰迅速分解,钛的氢化反应温度区间为350~680 ℃.氢化脱氢法生产的钛粉的杂质主要取决于原料的纯度和杂质情况,严格注意操作中的环节,只会引入少量的氧或碳等杂质.对于相同原料制取的钛粉,粒度越细,其含氧量越高.","authors":[{"authorName":"洪艳","id":"7be91d9c-86d1-424e-8849-026422d9f25f","originalAuthorName":"洪艳"},{"authorName":"曲涛","id":"8bf8230a-a64d-4c6c-a8a1-0783dfbdfd00","originalAuthorName":"曲涛"},{"authorName":"沈化森","id":"38046939-0f22-467d-b905-28e423ecd55e","originalAuthorName":"沈化森"},{"authorName":"王兆林","id":"abcb23b4-ac3d-4e7e-8266-df75cb104d76","originalAuthorName":"王兆林"},{"authorName":"车小奎","id":"73e76ada-e34e-4611-86fb-f74c757a079b","originalAuthorName":"车小奎"}],"doi":"10.3969/j.issn.0258-7076.2007.03.007","fpage":"311","id":"3ca152ca-c227-45d1-b0d3-4f90a15f53e2","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"1046e302-4183-4ca4-9a0c-cfb80aa8745d","keyword":"氢化脱氢法","originalKeyword":"氢化脱氢法"},{"id":"813da976-12aa-4fea-aebd-71e7fdcaa9ee","keyword":"差热分析","originalKeyword":"差热分析"},{"id":"10361341-23f9-4bd5-af0e-d104c4718549","keyword":"平衡分压","originalKeyword":"平衡分压"}],"language":"zh","publisherId":"xyjs200703007","title":"氢化脱氢法制备钛粉工艺研究","volume":"31","year":"2007"},{"abstractinfo":"采用SEM和XRD对Nd13Fe81.5B5.5合金氢化-歧化-脱氢过程中相结构和组织形貌的变化进行了观测分析,结果表明:非受热的Nd13Fe81.5B5.5合金的吸氢只能在富钕相的晶界上进行,吸氢的过程伴随着热量的释放.加热后的Nd13Fe81.5B5.5合金吸氢不仅沿着Nd13Fe81.5B5.5富钕相晶界进行,而且也能在其晶格内进行.合金吸氢后生成物主相为NdH2.9和α-Fe,还有微量的Fe2B和Fe2Nd,吸氢的过程伴随着大量热的释放,Nd13Fe81.5B5.5合金的吸氢温度为700℃,在730℃~800℃的范围内脱氢,在此工艺条件下,能获得高质量的氢化物.","authors":[{"authorName":"侯雪玲","id":"4643e36e-e27c-4f9b-8a39-8de28d84a8b5","originalAuthorName":"侯雪玲"},{"authorName":"孔俊峰","id":"9c9fb7a3-339a-40ba-9fef-70993da6f150","originalAuthorName":"孔俊峰"},{"authorName":"金红明","id":"2e1610f6-dcec-41af-977f-629c443b11bc","originalAuthorName":"金红明"},{"authorName":"李增峰","id":"b58078f1-aa75-4f94-807b-420dcec62604","originalAuthorName":"李增峰"},{"authorName":"庞薇","id":"8544f189-9edd-49c3-9b4d-7ec3a93791c1","originalAuthorName":"庞薇"},{"authorName":"石永金","id":"46f2a060-dab4-449f-b610-74ed56f8187e","originalAuthorName":"石永金"},{"authorName":"罗建军","id":"ab88abb8-39cb-43f5-bc6f-ed67596b339a","originalAuthorName":"罗建军"},{"authorName":"谈萍","id":"d8557d2d-ca54-468a-9df6-a9ce9ff94443","originalAuthorName":"谈萍"},{"authorName":"张晗亮","id":"12931644-d008-48a4-8a8f-705effbb5f31","originalAuthorName":"张晗亮"}],"doi":"","fpage":"1058","id":"0444b40a-67d6-4ef0-9051-f5bc3bef1883","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8affc05c-2f77-40a0-baf3-9621690ce1a2","keyword":"氢化-脱氢","originalKeyword":"氢化-脱氢"},{"id":"9dc61eda-e17e-43cc-b16b-6f36e742f377","keyword":"钕铁硼","originalKeyword":"钕铁硼"},{"id":"0a82d7d7-0ac6-4be4-9a17-0d75664f1c52","keyword":"组织结构","originalKeyword":"组织结构"}],"language":"zh","publisherId":"xyjsclygc200507014","title":"氢化脱氢钕铁硼微观组织结构的变化","volume":"34","year":"2005"},{"abstractinfo":"HDH(氢化脱氢)钛粉末颗粒形状不规则、流动性较差,不利于注射成形和提高其制品性能.本研究利用PCS系统对HDH钛粉末颗粒进行整形,考察了处理工艺,用扫描电镜和粒度分析表征处理结果,推测PCS的整形机理不是传统的粉碎过程,而是钛粉末颗粒的棱角被打磨掉再与大颗粒吸附嵌入,较好地解释了粒度分布等测试结果.整形后的HDH钛粉末颗粒尖锐的棱角被钝化,变为近球形,粉末的流动性显著提高.","authors":[{"authorName":"郝向阳","id":"0bd66ed1-502d-4985-b645-181bb4772118","originalAuthorName":"郝向阳"},{"authorName":"盖国胜","id":"1a62f110-b084-400c-a45f-0a61aded85e8","originalAuthorName":"盖国胜"},{"authorName":"邹欣","id":"02cf9286-d2b0-4f02-8757-a74edffd3691","originalAuthorName":"邹欣"},{"authorName":"吴运新","id":"59b66fb8-847f-4c23-9ee2-f91b5490adc3","originalAuthorName":"吴运新"},{"authorName":"张以河","id":"c213e862-c626-427c-8b10-19505c0c825d","originalAuthorName":"张以河"},{"authorName":"","id":"6118390b-5c7f-483b-981d-6876e0cefc98","originalAuthorName":""}],"doi":"","fpage":"264","id":"212f0696-1b50-49d6-b7ce-70a4bf4e3def","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"f93e7b1c-ba33-4bff-84c6-927663ef87bb","keyword":"整形","originalKeyword":"整形"},{"id":"0442dc64-6de9-4550-9ac0-2d7ee4a2c8b0","keyword":"球形化","originalKeyword":"球形化"},{"id":"9fdbe20d-868d-4203-b357-8e6f988b3880","keyword":"氢化脱氢(HDH)钛粉","originalKeyword":"氢化脱氢(HDH)钛粉"},{"id":"7f0cba80-fde3-418f-9233-410cd782befe","keyword":"粒度","originalKeyword":"粒度"}],"language":"zh","publisherId":"xyjsclygc2009z3057","title":"氢化脱氢钛粉末颗粒的整形及其机理研究","volume":"38","year":"2009"},{"abstractinfo":"通过对钛粉生产中的氢化-脱氢工艺进行火灾危险性分析,探讨了钛粉生产的火灾隐患和不安全因素,为其安全生产提供参考.","authors":[{"authorName":"魏东","id":"836f6885-0551-4640-b6ca-00f4abac0b45","originalAuthorName":"魏东"}],"doi":"10.3969/j.issn.1009-9964.2003.02.011","fpage":"36","id":"343b304b-4d07-4dd5-ba7a-d2c9a871bd29","issue":"2","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"1d637277-2390-4a4d-bd0c-2127b73363fe","keyword":"钛粉","originalKeyword":"钛粉"},{"id":"e43cf064-b56a-4b79-a3a2-9300d621e6eb","keyword":"火灾隐患","originalKeyword":"火灾隐患"},{"id":"91c29b62-28f0-4c94-9cde-cbfb2ee71536","keyword":"危险性","originalKeyword":"危险性"},{"id":"bf7511e4-5379-4731-ba73-2aab872f1def","keyword":"安全性","originalKeyword":"安全性"}],"language":"zh","publisherId":"tgyjz200302011","title":"钛粉生产中氢化-脱氢工艺的消防安全技术","volume":"","year":"2003"},{"abstractinfo":"研究了铸态ZK60镁合金粉末的氢化-脱氢优化技术及其在此过程中的晶粒尺寸纳米化机理.通过XRD、OM和TEM考察了氢化-脱氢过程中ZK60镁合金粉末相结构和显微组织演化规律,获得了制备纳米晶材料的氢化、脱氢工艺条件.结果表明:ZK60合金粉末在450℃、2 MPa条件下保温12h后能够完全氢化,随后在350℃保温并连续抽真空3h即可完全脱氢,在此过程中ZK60合金粉末的平均晶粒尺寸也从约150 μm被细化到约30 nm.","authors":[{"authorName":"王新","id":"664896ab-b9c1-4888-862f-bcf675b3b72d","originalAuthorName":"王新"},{"authorName":"樊建锋","id":"a356b849-0645-4cc2-8797-ae71a23789cd","originalAuthorName":"樊建锋"},{"authorName":"谢中柱","id":"4768923c-6256-4dc9-91b8-0b96ff2d981d","originalAuthorName":"谢中柱"},{"authorName":"张华","id":"346339bb-3332-4fd1-9de5-625fac88259c","originalAuthorName":"张华"},{"authorName":"董洪标","id":"8c50703d-943d-4bfe-8521-d67e2bc2dc03","originalAuthorName":"董洪标"},{"authorName":"许并社","id":"1a07a571-c59e-431e-9dd9-c9f18bdf0adc","originalAuthorName":"许并社"}],"doi":"","fpage":"2031","id":"78616243-d7da-4cec-9a7e-77d80e9b248c","issue":"8","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"9768a3e3-f374-4997-94f4-d14af1d25c6e","keyword":"氢化-脱氢","originalKeyword":"氢化-脱氢"},{"id":"692b5951-3077-49a6-8b60-d2170e2118bf","keyword":"ZK60镁合金","originalKeyword":"ZK60镁合金"},{"id":"c8106a48-671c-43d6-8c16-d11c9b747f1e","keyword":"纳米晶","originalKeyword":"纳米晶"}],"language":"zh","publisherId":"xyjsclygc201608021","title":"氢化-脱氢法制备ZK60镁合金纳米晶材料","volume":"45","year":"2016"},{"abstractinfo":"利用原位XRD及Rietveld法对Ti-Mo合金fcc δ相氢化物在293—1173 K脱氢过程中的晶格参数、晶粒尺寸及微观应变进行了分析. 在退火过程中, δ相逐渐脱氢转变为bcc β相固溶体.两相晶格参数的变化大体随Mo含量的增加和温度的升高而缩小, 且β相的变化率大于δ相的变化率. 两相的晶粒尺寸和微观应变在温度升高时都显示了先变大再变小的趋势. 从微观结构对上述现象进行了解释和讨论.","authors":[{"authorName":"苑学众","id":"1bd54913-14bf-47ae-8184-ee5939a1473c","originalAuthorName":"苑学众"},{"authorName":"郭秀梅","id":"3f822a48-6d3f-4a82-ac53-3829fccbb7dc","originalAuthorName":"郭秀梅"},{"authorName":"吴尔冬","id":"f52ebf28-5166-4be2-afa0-b6278571059a","originalAuthorName":"吴尔冬"},{"authorName":"王苏程","id":"84891b28-da18-4eba-aca9-ae60724374f4","originalAuthorName":"王苏程"}],"categoryName":"|","doi":"","fpage":"850","id":"174fe056-0c9c-4eb0-ace9-6330b4f78fdf","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"613a49ac-6806-4579-9a7c-0705c860f0ae","keyword":"Ti-Mo合金氢化物","originalKeyword":"Ti-Mo合金氢化物"},{"id":"a7bd6e22-e047-4dbd-ba5d-644b8f0296ce","keyword":"null","originalKeyword":"null"},{"id":"2f15112d-00da-4631-bd2a-e3f29fc0459c","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2006_8_8","title":"Ti-Mo合金氢化物脱氢过程的原位X射线衍射分析","volume":"42","year":"2006"},{"abstractinfo":"利用原位XRD及Rietveld法对Ti-Mo合金fccδ相氢化物在293-1173 K脱氢过程中的晶格参数、晶粒尺寸及微观应变进行了分析.在退火过程中,δ相逐渐脱氢转变为bcc β相固溶体.两相晶格参数的变化大体随Mo含量的增加和温度的升高而缩小,且β相的变化率大于δ相的变化率.两相的晶粒尺寸和微观应变在温度升高时都显示了先变大再变小的趋势.从微观结构对上述现象进行了解释和讨论.","authors":[{"authorName":"苑学众","id":"3cfe7d72-75e8-4060-a88f-441b83606ad0","originalAuthorName":"苑学众"},{"authorName":"郭秀梅","id":"20e1161f-97b2-4beb-ac62-be0648449bf4","originalAuthorName":"郭秀梅"},{"authorName":"吴尔冬","id":"9107c1e1-0117-45a6-b129-1ed0ba6c7f18","originalAuthorName":"吴尔冬"},{"authorName":"王苏程","id":"d2ab0566-2d77-4a42-8fdc-b1a1eacf2476","originalAuthorName":"王苏程"}],"doi":"10.3321/j.issn:0412-1961.2006.08.013","fpage":"850","id":"0405b5d0-62b0-42cc-8493-775d6ece6abd","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"26964d47-2a1d-4b9d-84f8-8848fe18a2f9","keyword":"Ti-Mo合金氢化物","originalKeyword":"Ti-Mo合金氢化物"},{"id":"d462c1df-6cd2-497b-bdd4-2a9d2fe79b1b","keyword":"脱氢","originalKeyword":"脱氢"},{"id":"1a62e45f-0bba-4472-97b0-49d063ee5270","keyword":"Rietveld法","originalKeyword":"Rietveld法"},{"id":"4b4d25fc-8f40-41a6-a49f-60e652eebeef","keyword":"微观缺陷","originalKeyword":"微观缺陷"}],"language":"zh","publisherId":"jsxb200608013","title":"Ti-Mo合金氢化物脱氢过程的原位X射线衍射分析","volume":"42","year":"2006"},{"abstractinfo":"研究了Nd-Fe-B合金的氢化/歧化物的脱氢过程的特点,通过对原料合金、氢化/歧化物和脱氢合成材料的微观结构、X射线衍射图和磁性能的对比研究,建立了Nd-Fe-B氢化/歧化物脱氢再合成Nd-Fe-B型硬磁材料的机理.","authors":[{"authorName":"石永金","id":"be5457de-700c-404c-81f3-0c9732b3911d","originalAuthorName":"石永金"},{"authorName":"周济","id":"88f23b10-1654-4ce3-add3-3884155bbc26","originalAuthorName":"周济"},{"authorName":"邓朝权","id":"659177c9-a09e-4b67-8cfc-3dd809cac4d8","originalAuthorName":"邓朝权"},{"authorName":"刘康美","id":"f320e406-c304-4dff-986b-16404f94d9de","originalAuthorName":"刘康美"}],"doi":"","fpage":"171","id":"fe4ada86-9796-417b-9a95-56f97c2dcf35","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a7d1107d-1273-4488-a702-a908f0fd7456","keyword":"Nd2Fe14B型合金","originalKeyword":"Nd2Fe14B型合金"},{"id":"62dbae7f-dd87-4610-b348-741110ec00d5","keyword":"氢化/歧化","originalKeyword":"氢化/歧化"},{"id":"f02e0d08-c2ee-445a-8dc4-e26241d84f62","keyword":"脱氢重合成","originalKeyword":"脱氢重合成"},{"id":"23101550-09a6-46d4-967b-972f40992dc7","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"xyjsclygc200203003","title":"钕铁硼合金的氢化/歧化物的脱氢再合成新磁材的微观组织和磁性能","volume":"31","year":"2002"},{"abstractinfo":"钛粉、氢化钛粉及其预合金粉是钛材加工的重要原料.综述了氢化制取钛粉末的研究现状,并分析了氢化制取钛粉末的主要工艺.氢化球磨法制粉具有操作简单、成本低等优点,但氧含量高是此法制粉的一大缺点.随着制粉工艺的发展,能够制备出低价优质的钛粉、氢化钛粉.制粉新工艺开发与应用也将极大推动钛材的发展.","authors":[{"authorName":"黄光明","id":"bd3588dd-855c-4489-9fd0-626f7c949c05","originalAuthorName":"黄光明"},{"authorName":"雷霆","id":"6102dda6-f566-430d-8885-2ab50e44aaea","originalAuthorName":"雷霆"},{"authorName":"方树铭","id":"5cfab4c2-1ae3-442e-9bbb-9fcea7db017d","originalAuthorName":"方树铭"},{"authorName":"李红梅","id":"ea3b2d6a-4898-4b45-9047-53b84e1fee36","originalAuthorName":"李红梅"}],"doi":"10.3969/j.issn.1009-9964.2010.06.002","fpage":"6","id":"35827739-f4f0-4640-8281-f8c95af1851b","issue":"6","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"16e42027-21b7-459f-bb52-9c6f132b555b","keyword":"钛粉","originalKeyword":"钛粉"},{"id":"f6729f4e-c76a-4085-9d9d-dcbc9aa5ec79","keyword":"氢化钛粉","originalKeyword":"氢化钛粉"},{"id":"99be932a-868d-4e7d-bf6b-36616874efe4","keyword":"氢化","originalKeyword":"氢化"},{"id":"b3d0d2e3-5976-4922-a46d-7c415d72db15","keyword":"雾化法","originalKeyword":"雾化法"},{"id":"bcbb4867-62d5-43c8-8066-386f6e633c3b","keyword":"氢化球磨法","originalKeyword":"氢化球磨法"}],"language":"zh","publisherId":"tgyjz201006002","title":"氢化脱氢制备钛粉的研究进展","volume":"27","year":"2010"}],"totalpage":3459,"totalrecord":34588}