{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对压缩空气储能系统存在系统流程上的对称性、流程点的对应性和对应点较强的物理关联性的特点,本文提出了适用于压缩空气储能系统的对应点分析新方法,建立了对应点效率、对应设备(火用)效率、设备因子和恢复系数等数学模型,这些模型能反映系统局部和整体的恢复能力、对应设备的性能,以及系统优化改进方向.同时,本文以超临界压缩空气储能系统为典型案例,证实了该分析方法的实用性和简洁性.本文的研究为压缩空气储能系统的分析提供了简洁方法,具有一定的研究和工程价值.","authors":[{"authorName":"郭欢","id":"bdd337c6-5d18-4c9e-a0d9-73ef99487902","originalAuthorName":"郭欢"},{"authorName":"徐玉杰","id":"372a5310-f119-4ebb-99c7-ef4c439013c0","originalAuthorName":"徐玉杰"},{"authorName":"刘畅","id":"b0b213f3-ecfb-462d-93a6-862ea2d26992","originalAuthorName":"刘畅"},{"authorName":"陈海生","id":"f4fec543-8357-4fd2-bfba-6d5401b8e33e","originalAuthorName":"陈海生"}],"doi":"","fpage":"2567","id":"f135564f-f91d-4397-a0dd-412be3cee6ba","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fe20e544-997b-4624-a72e-2f5c73e6b652","keyword":"压缩空气储能系统","originalKeyword":"压缩空气储能系统"},{"id":"fab72613-8c87-4ee2-97ff-23707b5e122c","keyword":"分析方法","originalKeyword":"分析方法"},{"id":"506cbde0-231b-4019-83d6-ba703dd99409","keyword":"对应点","originalKeyword":"对应点"}],"language":"zh","publisherId":"gcrwlxb201512007","title":"一种压缩空气储能系统性能分析新方法","volume":"36","year":"2015"},{"abstractinfo":"本文依据对应态原理,提出新定义的对比压缩因子Zr=(1-Z)/(1-ZC)的无量纲变换式和对饱和温度的对比温度(T)sr=T/Ts式,并根据两种流体工质对比压力Pr1=Pr2,对比温度(T)sr1=(T)sr2相等时,(Z)r1=(Z)r2相等的原则,导出了从一种已知PVT关系的物质推算它种物质的PVT值的通用方法.用本方法以水为标准物质推算了R12、R131、R134a、C2H4等几种物质在过热气体区、超临界区和液体区比容,计算值与文献实验值的平均偏差小于2,最大偏差小于4%.","authors":[{"authorName":"陈则韶","id":"b64f091f-c73a-4839-8aee-060378359b41","originalAuthorName":"陈则韶"},{"authorName":"胡芃","id":"f4e83740-1b35-40ef-9b28-b35db629fbde","originalAuthorName":"胡芃"},{"authorName":"陈建新","id":"9f7d8cba-e025-459d-a866-e43172a99306","originalAuthorName":"陈建新"},{"authorName":"程文龙","id":"680e1abe-76cb-4215-bdb6-7e7625f7c397","originalAuthorName":"程文龙"}],"doi":"","fpage":"557","id":"aff6b721-02ce-422d-b9aa-99c4120be532","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b7c70bfa-987f-4684-b840-38698e26be37","keyword":"流体","originalKeyword":"流体"},{"id":"2ac805df-2db1-4136-932d-44e23147432f","keyword":"热物性","originalKeyword":"热物性"},{"id":"0d5b6ec3-9b96-4b81-9a5f-d9ec96bd160b","keyword":"PVT关系","originalKeyword":"PVT关系"},{"id":"89006111-e6a3-46cf-a716-2e276bf9bf62","keyword":"推算方法","originalKeyword":"推算方法"}],"language":"zh","publisherId":"gcrwlxb200504005","title":"流体PVT的对应关系","volume":"26","year":"2005"},{"abstractinfo":"利用Bain点阵对应对K-S模型的晶格改建过程进行了严密的数学描述.对于不同的马氏体正方度,提出了计算第一切变、第二切变及晶格调整的计算依据,并给出了普遍的计算公式.以Fe-1.4C和纯铁为例,计算了马氏体相变的点阵畸变.进一步分析表明,K-S模型实质是Bain模型的旋转.计算的结果与实测的取向关系相符合.","authors":[{"authorName":"王宝奇","id":"66fcdc3f-a335-4c2a-aa59-a3e0531aeabc","originalAuthorName":"王宝奇"},{"authorName":"谷南驹","id":"2c0a5419-4841-4449-ae0b-c6d21f7e5175","originalAuthorName":"谷南驹"},{"authorName":"郭素珍","id":"958403e3-cb3e-4113-97b6-17ffd1245fd2","originalAuthorName":"郭素珍"},{"authorName":"马晓莉","id":"d8a30bc0-a479-41d9-a59b-bb8cee62a5c3","originalAuthorName":"马晓莉"}],"categoryName":"|","doi":"","fpage":"474","id":"7c3f58a7-8ba1-4262-929f-090a29112bb1","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b13f51e3-f329-4c75-ada7-56be9e131212","keyword":"K-S模型","originalKeyword":"K-S模型"},{"id":"eb17c3c1-037e-4d1e-92a7-ab5d1928e3bf","keyword":"null","originalKeyword":"null"},{"id":"2a967936-5e9e-4b98-a4a3-6c63759306bd","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2002_5_19","title":"Bain对应和K-S模型的数学描述","volume":"38","year":"2002"},{"abstractinfo":"利用Bain点阵对应对K-S模型的晶格改建过程进行了严密的数学描述.对于不同的马氏体正方度,提出了计算第一切变、第二切变及晶格调整的计算依据,并给出了普遍的计算公式.以Fe-1.4C和纯铁为例,计算了马氏体相变的点阵畸变.进一步分析表明,K-S模型实质是Bain模型的旋转.计算的结果与实测的取向关系相符合.","authors":[{"authorName":"王宝奇","id":"a620afff-3f18-4548-8fb3-6175dd36c524","originalAuthorName":"王宝奇"},{"authorName":"谷南驹","id":"fdc318f6-d7c3-4be1-87d2-b262112e8cfd","originalAuthorName":"谷南驹"},{"authorName":"郭素珍","id":"46dd35a7-a1a6-46b6-8f57-10830526724d","originalAuthorName":"郭素珍"},{"authorName":"马晓莉","id":"d796f2a0-52e1-4103-a9e1-49b38fdfa264","originalAuthorName":"马晓莉"}],"doi":"10.3321/j.issn:0412-1961.2002.05.006","fpage":"474","id":"0f6db021-a1a7-41fa-9109-482a720bc188","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"62787106-3432-4a63-8518-3679064c4b49","keyword":"K-S模型","originalKeyword":"K-S模型"},{"id":"ad482170-98cb-4d3b-821d-331b5b23b42e","keyword":"马氏体相变","originalKeyword":"马氏体相变"},{"id":"d64dced8-c68e-424c-af8f-4ab721100f3a","keyword":"点阵畸变","originalKeyword":"点阵畸变"}],"language":"zh","publisherId":"jsxb200205006","title":"Bain对应和K-S模型的数学描述","volume":"38","year":"2002"},{"abstractinfo":"研究了基于共形对应的球面图像的计算全息图(CGH)的生成和重现.通常,当用平面波照射全息图时,所重现的图像一般显示在平面上.共形对应在计算机图形学中被广泛应用,它可以将平面图像和任意曲面对应.相对于简单的坐标变换,共形对应关系具有很多优点,如它可以保持变换前后图像之间的几何形状不变性等.将共形对应引入计算机全息图的生成过程中,利用平面与球面的共形对应关系,生成显示于球面的二维图像的计算全息图,并由所生成全息图得到原始图像,从而实现整个全息记录和重现过程的计算机模拟.二维图像重现于球面实际上了产生三维显示,因此上述方法在从计算全息图重现三维图像方面起到重要的作用.","authors":[{"authorName":"丁大为","id":"56cd8053-5654-4c3c-8883-2bebee123de2","originalAuthorName":"丁大为"},{"authorName":"胡茂林","id":"4d5232a1-d445-4b5c-9d83-a1a59e4a5ca4","originalAuthorName":"胡茂林"},{"authorName":"韦穗","id":"98f4dba3-acb1-4f11-9e03-20b4c24401e8","originalAuthorName":"韦穗"}],"doi":"10.3969/j.issn.1007-5461.2005.03.010","fpage":"368","id":"76e03ea5-e435-422b-bd8a-99832b2f9b17","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"2e24b138-a6d8-4102-b581-f53ed8582093","keyword":"信息光学","originalKeyword":"信息光学"},{"id":"753ec6b9-15cd-478a-b7ac-ac3cc0a6bffa","keyword":"计算全息图傅里叶全息图","originalKeyword":"计算全息图傅里叶全息图"},{"id":"641e6c6e-d728-497d-9e69-c08656775e2f","keyword":"共形对应","originalKeyword":"共形对应"},{"id":"455dcf09-d99c-4198-b11b-3fc75288dcbd","keyword":"数字全息","originalKeyword":"数字全息"}],"language":"zh","publisherId":"lzdzxb200503010","title":"基于共形对应的球面图像的计算全息图","volume":"22","year":"2005"},{"abstractinfo":"本文以4He和Ne作为参考流体,采用四种对应态原理形式分别对氦-3的p-v-T性质进行了预测.结果表明,采用量子三参数对应态原理预测氦-3低密度下的p-v-T性质具有较高精度和较广的预测范围.","authors":[{"authorName":"汪世清","id":"58112959-ee4c-4c67-a308-97ec063a4d4d","originalAuthorName":"汪世清"},{"authorName":"陈国邦","id":"33f9a6aa-71f8-47ae-a19f-c2b5b94f5c78","originalAuthorName":"陈国邦"},{"authorName":"黄永华","id":"d50f2349-0a89-4d49-a7fa-4893881a9dd5","originalAuthorName":"黄永华"}],"doi":"","fpage":"564","id":"212c5ba4-c3af-4d08-a42d-215431d11aba","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"40648b1e-d3ab-4d66-a816-f33bcbb5546f","keyword":"氦-3","originalKeyword":"氦-3"},{"id":"edf7f101-f9c3-4712-9152-34f33407cf91","keyword":"p-v-T性质","originalKeyword":"p-v-T性质"},{"id":"af342224-7ee0-4a27-be02-6627d6b6bfb5","keyword":"对应态原理","originalKeyword":"对应态原理"}],"language":"zh","publisherId":"gcrwlxb200804007","title":"采用对应态原理预测氦-3的p-v-T性质","volume":"29","year":"2008"},{"abstractinfo":"叙述与分析了微弧氧化陶瓷膜的生长规律、电流变化规律.根据建立的膜层结构与对应电压的关系模型,研究了微弧氧化陶瓷膜的生成机理.","authors":[{"authorName":"李淑华","id":"441ff21e-c491-4cac-809e-588eb74aaf7f","originalAuthorName":"李淑华"},{"authorName":"程金生","id":"7d14f7c3-a9e5-4542-b33c-839dfa0b0c6c","originalAuthorName":"程金生"},{"authorName":"尹玉军","id":"cc32d78d-2c5c-4a0f-a3e5-99912def0594","originalAuthorName":"尹玉军"},{"authorName":"杨润泽","id":"1cc1fc65-213a-44f3-92d8-655648ccb2a8","originalAuthorName":"杨润泽"},{"authorName":"辛文彤","id":"ccb71f45-76f3-4c8f-b641-602351c9e9fe","originalAuthorName":"辛文彤"}],"doi":"10.3969/j.issn.1000-3738.2001.11.009","fpage":"23","id":"ab898937-8cb9-445b-b299-b6df64ae9c95","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"3b9a49f7-9198-451b-9b3b-a55fc5b57abf","keyword":"铝微弧氧化","originalKeyword":"铝微弧氧化"},{"id":"67955fa6-dda8-42ba-8097-0d11ccf003f1","keyword":"膜层结构","originalKeyword":"膜层结构"},{"id":"feac8e3f-b53b-4868-b7f8-304ed59b32c4","keyword":"生长规律","originalKeyword":"生长规律"}],"language":"zh","publisherId":"jxgccl200111009","title":"铝的微弧氧化机理与膜层结构的对应关系","volume":"25","year":"2001"},{"abstractinfo":"基于表述经典及量子系统可积性的动力对称性群,对量子可积系统规则运动的经典对应问题运用归纳法进行了研究. 具体给出了经典近似描述的适用条件,并进行了简明讨论.","authors":[{"authorName":"徐躬耦","id":"5b7e8d77-442d-484c-887c-bce841ecfa26","originalAuthorName":"徐躬耦"},{"authorName":"杨亚天","id":"16acfe4d-8d92-46af-8656-21020050a730","originalAuthorName":"杨亚天"},{"authorName":"徐鸣洁","id":"7a501b2d-105f-44ed-9d49-25a7446cafbb","originalAuthorName":"徐鸣洁"}],"doi":"10.3969/j.issn.1007-4627.2001.04.002","fpage":"201","id":"a4460a20-2907-4136-a71d-369dd4151ac8","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"e7cf77d7-4697-4a43-936f-59d4e31145e5","keyword":"动力对称性群","originalKeyword":"动力对称性群"},{"id":"9013b286-4df8-4d46-96cd-f6e7996eb74c","keyword":"量子规则运动","originalKeyword":"量子规则运动"},{"id":"af17ec2b-1d47-4303-8a19-1a18fd6d1750","keyword":"量子经典对应","originalKeyword":"量子经典对应"}],"language":"zh","publisherId":"yzhwlpl200104002","title":"可积系统规则运动的量子经典对应与有关问题","volume":"18","year":"2001"},{"abstractinfo":"对于一般形式的含时电容和电感耦合电路,利用Heisenberg对应原理研究了体系的量子经典对应关系以及量子涨落.通过海森堡绘景中的波函数和运动方程的精确解,在大量子数极限下由量子解得到了经典解.对矩阵元中初始相位求平均得到了体系中电荷和磁通量的量子涨落.当电路中的电感随时间指数增加,而电容指数减小时,电路中的电荷和电流的量子涨落也随时间指数减小;当两个分回路中的电容和电感不随时间变化且相等时,发现耦合电容趋于减小电流的量子涨落,而耦合电感趋于减小电荷的量子涨落.","authors":[{"authorName":"李凤敏","id":"224d8682-5043-46d5-bb4c-30e0772ad384","originalAuthorName":"李凤敏"},{"authorName":"盛朝霞","id":"2302ba9d-881f-4ed7-b2de-def59b938b5a","originalAuthorName":"盛朝霞"}],"doi":"10.3969/j.issn.1007-5461.2006.03.027","fpage":"408","id":"777d4f8b-b620-4561-8225-34d31f7bddc5","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"c0f784b9-eca9-4a7b-837d-9f76a5846bc7","keyword":"量子光学","originalKeyword":"量子光学"},{"id":"12da3624-9643-47aa-974b-14217d57f503","keyword":"量子涨落","originalKeyword":"量子涨落"},{"id":"b18b58cf-1dab-418b-b37a-ad4c434406c4","keyword":"对应原理","originalKeyword":"对应原理"},{"id":"ed2f92d4-c9ad-4e84-8c48-e2ccf400b526","keyword":"介观电路","originalKeyword":"介观电路"},{"id":"d21641f4-7eb3-4152-80de-e21f52ce67d4","keyword":"谐振子","originalKeyword":"谐振子"}],"language":"zh","publisherId":"lzdzxb200603027","title":"海森堡对应原理在含时介观耦合电路中的应用","volume":"23","year":"2006"},{"abstractinfo":"为了弄清晶体颗粒氟铁酸钾转化膜的形貌、结构与其耐蚀性之间的关系,以不同工艺在Q195冷轧板表面制备了氟铁酸钾转化膜.采用扫描电镜观察其形貌、结构;采用能谱仪测试其成分;通过中性盐雾试验及电化学方法测试其耐蚀性,采用百格法测试其附着力;讨论了各工艺条件对氟铁酸盐转化膜的形貌及耐蚀性的影响及其对应性,优化了工艺条件.结果表明:晶体结构氟铁酸钾转化膜的形貌、结构与其耐蚀性存在对应关系;氟铁酸钾转化膜的最佳制备工艺为125 g/L KF,20 g/L(NH4)2S2O8,100 mL/L H2O2,85 mL/L HNO3,50℃,90 min;该工艺下,钢铁表面生成了晶体颗粒状氟铁酸钾转化膜,膜层由F,K,Fe,O等元素组成,膜层颗粒粗大、均匀、致密,与基体结合牢固,耐蚀性较好,耐中性盐雾时间达85 h以上.","authors":[{"authorName":"陈洁","id":"10255544-3556-4046-88fd-2bcd6d79783a","originalAuthorName":"陈洁"},{"authorName":"郭瑞光","id":"89578b5a-cfd4-43e1-99b6-7a421e653a3e","originalAuthorName":"郭瑞光"},{"authorName":"牛林清","id":"e4ec728f-ae58-4652-ac9e-444c546a5fae","originalAuthorName":"牛林清"},{"authorName":"唐长斌","id":"167e56e7-3783-4203-8c66-489e409c765b","originalAuthorName":"唐长斌"},{"authorName":"郭洪涛","id":"8b20b56c-2a20-4658-96ce-544303481717","originalAuthorName":"郭洪涛"},{"authorName":"雷勇刚","id":"ee37cbb9-50f7-4115-a5e2-97247d7353b2","originalAuthorName":"雷勇刚"}],"doi":"","fpage":"33","id":"c5da4cc1-d03b-4901-ac66-c844b2648355","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d85ca8a5-bd61-429d-9e23-a9dc75fd96d2","keyword":"氟铁酸盐转化膜","originalKeyword":"氟铁酸盐转化膜"},{"id":"9d2d5ddb-34a8-41e0-aa1c-6a62e2a02f85","keyword":"晶体颗粒","originalKeyword":"晶体颗粒"},{"id":"4c766c63-38a7-47a1-bccf-81f8e9999168","keyword":"Q195冷轧板","originalKeyword":"Q195冷轧板"},{"id":"36936cd9-5e21-4a64-a0f3-9af720a9968e","keyword":"形貌","originalKeyword":"形貌"},{"id":"deb997a2-dbc1-4081-815e-a2f468760ba7","keyword":"结构","originalKeyword":"结构"},{"id":"4f5408a2-4d77-40eb-8c00-8721867ce747","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201307011","title":"钢铁表面氟铁酸盐转化膜的形貌、耐蚀性及其对应性","volume":"46","year":"2013"}],"totalpage":389,"totalrecord":3881}