{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文主要是用拓扑分析的方法,根据实验给出的流场信息,来确定流场结构的性质和研究这些性质随流动参数变化的规律,从而得到对流场特性的定性认识,这里着重讨论了离心叶轮内表面分离流态,指出叶片吸力面和压力面不同的分离形式,分析了叶片表面奇点分布规律,建立了叶道内三维流动分离模型.","authors":[{"authorName":"李意民","id":"8e0b0d98-79b6-4fe1-8310-90b5125b3053","originalAuthorName":"李意民"}],"doi":"","fpage":"321","id":"883f38fe-7be1-417a-8a07-4877b8b57e59","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"79cd3c06-2020-45d5-9489-b60705721dad","keyword":"离心叶轮","originalKeyword":"离心叶轮"},{"id":"537d988e-d8d5-4242-b3a6-23ebf638f767","keyword":"分离流态","originalKeyword":"分离流态"},{"id":"21cdff65-3589-465f-9941-657023ab30fe","keyword":"拓扑分析","originalKeyword":"拓扑分析"}],"language":"zh","publisherId":"gcrwlxb200003015","title":"离心叶轮内三维分离流态的拓扑分析","volume":"21","year":"2000"},{"abstractinfo":"论述了高自旋同质异能态束流的物理意义. 以RINKEN的HSIB为例, 简略地叙述了高自旋同质异能态束流的产生、分离、传输及纯化的方法, 并对高自旋同质异能态束流诱发核反应中放出的γ射线探测技术进行了论述.","authors":[{"authorName":"周小红","id":"102dd980-064f-4643-a574-ad38a0140e1e","originalAuthorName":"周小红"}],"doi":"10.3969/j.issn.1007-4627.2000.02.005","fpage":"87","id":"369b3b52-f860-4d93-a464-7da4815fece5","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"b4883b4b-2fee-4480-9e8e-12572df98ad1","keyword":"高自旋同质异能态","originalKeyword":"高自旋同质异能态"},{"id":"f2e1a816-e03f-48cc-b774-45078cf2df6b","keyword":"核反应","originalKeyword":"核反应"},{"id":"acfade8a-e6b9-4556-a74a-bea5117cd8af","keyword":"γ射线探测","originalKeyword":"γ射线探测"}],"language":"zh","publisherId":"yzhwlpl200002005","title":"高自旋同质异能态束流的产生和应用","volume":"17","year":"2000"},{"abstractinfo":"本文在VOSET界面捕捉方法的基础上对控制方程进行修正,使其能够计算带相变的两相流问题,然后用这种方法计算水平壁面上的膜态沸腾.模拟得到的平均Nu数与Klimenko的关联式的计算结果基本一致.计算结果表明,在较低的壁面过热度下,膜态沸腾呈现气泡状流动;在较高的壁面过热度下,膜态沸腾呈现气带状流动.","authors":[{"authorName":"凌空","id":"73a6f13f-e940-4b27-9dcf-1001c096839d","originalAuthorName":"凌空"},{"authorName":"陶文铨","id":"8c541c18-130c-40d3-b89d-44b32f630a19","originalAuthorName":"陶文铨"}],"doi":"","fpage":"2240","id":"4a9e3693-716d-41fd-92b2-dbc0cd823e7b","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"71e3a8fe-f0b7-49ca-b7db-3ae9a865451a","keyword":"VOSET","originalKeyword":"VOSET"},{"id":"1f5aac1c-5b3f-42df-87ea-3246c63e5fa9","keyword":"膜态沸腾","originalKeyword":"膜态沸腾"},{"id":"1d73cf22-b0fc-4549-9c15-fdbfbb41795d","keyword":"数值计算","originalKeyword":"数值计算"}],"language":"zh","publisherId":"gcrwlxb201411028","title":"VOSET方法计算膜态沸腾的不同流态","volume":"35","year":"2014"},{"abstractinfo":"过程强化是化学工程与技术领域的研究热点之一,化学工程研究的新进展大大推动了过程强化技术的进步.介绍了“场”“流”分析的基本概念,并以此为出发点,讨论了过程耦合技术,以及化学作用、外场介入对分离过程的强化.","authors":[{"authorName":"戴猷元","id":"f10e7e3b-0516-4ffc-aece-6ad61c868bec","originalAuthorName":"戴猷元"},{"authorName":"张瑾","id":"73f256d1-dea6-4b99-b81a-6213bb06783d","originalAuthorName":"张瑾"}],"doi":"10.3969/j.issn.1007-8924.2011.03.008","fpage":"47","id":"349a2712-86fe-404f-9296-45315583ea4a","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"f373202f-5280-4586-a126-dc91eea9de30","keyword":"“场”“流”分析","originalKeyword":"“场”“流”分析"},{"id":"329e373d-cba4-4998-ad7d-1074904c002c","keyword":"耦合技术","originalKeyword":"耦合技术"},{"id":"61e4e216-7d3f-47bf-9556-7612372c0350","keyword":"过程强化","originalKeyword":"过程强化"}],"language":"zh","publisherId":"mkxyjs201103008","title":"“场”“流”分析与分离过程强化","volume":"31","year":"2011"},{"abstractinfo":"在外界来流作用下,液滴在固体表面上呈现周期性振荡特性.利用数值方法模拟平板上二维液滴在气流剪切作用下的界面及内部流动特性,重构二维液滴内部流场,着重认识液滴内部速度分布和压力分布.","authors":[{"authorName":"林志勇","id":"970f6adc-eefc-428b-8477-676e413150b0","originalAuthorName":"林志勇"},{"authorName":"彭晓峰","id":"55c8f199-3ce0-4fa3-9d9e-1f6d83778990","originalAuthorName":"彭晓峰"}],"doi":"","fpage":"289","id":"ee39f72f-4dbf-46b6-b17c-ee90f2a7b222","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"cc074302-fa07-44e4-b110-2e2615225e34","keyword":"振荡","originalKeyword":"振荡"},{"id":"95fed338-44bc-4d9b-8669-232397e51c3f","keyword":"液滴","originalKeyword":"液滴"},{"id":"2825fa3a-4305-47b6-9e05-3aa953c138af","keyword":"内部流动","originalKeyword":"内部流动"},{"id":"c2bf984d-d0fb-465d-a48f-611b16dbe30e","keyword":"VOF","originalKeyword":"VOF"}],"language":"zh","publisherId":"gcrwlxb200702034","title":"振荡液滴内部流态","volume":"28","year":"2007"},{"abstractinfo":"\"类流态\"是固态合金中存在的一种非线性振荡现象,在某些微区表现出明显的流动特性.根据非线性动力学的无标度理论,固体类流态\"胞\"区的天然破裂过程与地壳板块岩石的破裂过程在物理机制和表现形式上具有相似性.通过对固体\"类流态\"图像灰度值的时间序列进行分析,分别用Lyapunov指数和相位随机化方法判定了其混沌特性.研究表明固体\"类流态\"现象呈现出明显的非线性动力学特征,这一研究也为非线性和复杂性研究提供了以材料物理试验为内涵的范例.\n","authors":[{"authorName":"高后秀","id":"99a6facb-6412-48cb-99c7-85d6e6faf6ab","originalAuthorName":"高后秀"},{"authorName":"张贵杰","id":"3c492949-19c8-4c9f-8448-5d913341e81d","originalAuthorName":"张贵杰"},{"authorName":"马军海","id":"bfd0e7df-3bbb-498a-8a30-326c3c8dd94d","originalAuthorName":"马军海"},{"authorName":"杨渝钦","id":"c3285915-a252-480d-bb7c-c28e055d015d","originalAuthorName":"杨渝钦"}],"doi":"10.3969/j.issn.1009-6264.2002.02.008","fpage":"28","id":"398ee16b-1d97-40f3-97df-a1d794033e00","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"7ea8d670-fee8-403c-a445-c4b20228b285","keyword":"类流态","originalKeyword":"类流态"},{"id":"8fc69dad-d476-4982-8a01-acf89b15464d","keyword":"实测时序","originalKeyword":"实测时序"},{"id":"11bf4c59-6cce-4f1e-9385-6af0d4dcab62","keyword":"混沌","originalKeyword":"混沌"},{"id":"54303a94-c79c-40cc-92b2-cf0b2acbd08c","keyword":"相位随机化","originalKeyword":"相位随机化"},{"id":"68c7733a-61c1-4d83-9344-1d3475546760","keyword":"Lyapunov指数","originalKeyword":"Lyapunov指数"}],"language":"zh","publisherId":"jsrclxb200202008","title":"固体\"类流态\"实测数据的混沌特征判定","volume":"23","year":"2002"},{"abstractinfo":"本文采用一种简化的多流体多相流模型及雷诺应力湍流模型建立了水力旋流器内液固多相湍流流动的数学描述,并对高炉污泥旋流分离进行了数值模拟,获得了水力旋流器内高炉污泥流动的流场及颗粒分级效率曲线,数值计算得到的颗粒分级效率曲线与实验结果吻合很好.数值结果还表明,底流管直径较小的旋流器分离高炉污泥的效果较好.","authors":[{"authorName":"耿丽萍","id":"04cc21e3-0efe-4c43-9866-7111ce6b0b21","originalAuthorName":"耿丽萍"},{"authorName":"杨茉","id":"ea65429e-09a4-4bd2-84ef-99fbe7785482","originalAuthorName":"杨茉"},{"authorName":"曹玮","id":"d24d7681-3309-4a4b-9503-524fa46bf985","originalAuthorName":"曹玮"},{"authorName":"邹宽","id":"b8923bb5-7854-42a6-bf34-655949d68be0","originalAuthorName":"邹宽"},{"authorName":"章立新","id":"3e903c2e-a88d-4133-b381-127452a4eed3","originalAuthorName":"章立新"},{"authorName":"胡利光","id":"b5109e5e-af08-42ee-9dfa-483e24dbdb65","originalAuthorName":"胡利光"},{"authorName":"林高平","id":"444a0f07-5baa-47da-aa4c-1db42caa3ac7","originalAuthorName":"林高平"},{"authorName":"林宗虎","id":"deeef321-3902-45da-9614-b639708228f2","originalAuthorName":"林宗虎"}],"doi":"","fpage":"628","id":"566fa256-232c-4a29-aee8-2f44858bcfe8","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e3a48bc8-3805-44d3-887f-6c01ecc6d99e","keyword":"高炉污泥","originalKeyword":"高炉污泥"},{"id":"9d9e318e-4697-4d11-9c57-ef561bac8998","keyword":"水力旋流器","originalKeyword":"水力旋流器"},{"id":"b3f1145a-9f27-4f2e-9495-8cc52022c0a1","keyword":"多相流","originalKeyword":"多相流"}],"language":"zh","publisherId":"gcrwlxb200404027","title":"高炉污泥旋流法颗粒分离的数值模拟","volume":"25","year":"2004"},{"abstractinfo":"重力场流分离是最简单的场流分离(gravitational flow-field fractionation,GrFFF)技术,常用于分离粒径几微米到几十微米的颗粒及生物样品.利用自组装加工的重力场流分离仪器分离3种不同粒径(3、6、20 μm)的聚苯乙烯(PS)颗粒.自制了一种混合表面活性剂,并与商品化的表面活性剂FL-70进行了比较.通过均匀设计优化流速、混合表面活性剂中聚乙二醇辛基苯基醚(Triton X-100)的质量分数、载液黏度、停流时间等分离条件,以分离度(Rs)和保留比(R)为评价指标,发现FL-70的分离效能略优于自制的混合表面活性剂,可实现3种PS颗粒的完全分离(Rs1为1.771,Rs2为2.074).结果表明该系统具有良好的分离性能.","authors":[{"authorName":"邱百灵","id":"600a932d-0164-4980-b093-9a7b2a614d67","originalAuthorName":"邱百灵"},{"authorName":"吴迪","id":"279661e6-8240-49a7-9a05-b23c4cf6b984","originalAuthorName":"吴迪"},{"authorName":"郭爽","id":"80487ecb-febb-4264-a509-3db10d2c30f5","originalAuthorName":"郭爽"},{"authorName":"朱尘琪","id":"49ff3bd0-ee27-4ff1-bfac-a295ecda9196","originalAuthorName":"朱尘琪"},{"authorName":"高杨亚雅","id":"fdc90c3c-ca9f-4c6f-aae9-a6bf1d6b797e","originalAuthorName":"高杨亚雅"},{"authorName":"梁启慧","id":"8910a529-1757-4780-b1e4-e5d2da6ce8b7","originalAuthorName":"梁启慧"},{"authorName":"高也","id":"5b19ea69-800e-448d-bbb3-75dfed604bec","originalAuthorName":"高也"},{"authorName":"宋宇","id":"f5f8d4a4-d8c8-4580-b16f-deef7c7b76d1","originalAuthorName":"宋宇"},{"authorName":"韩南银","id":"8d673dfa-fbb8-4d76-a662-32ac7a70a042","originalAuthorName":"韩南银"}],"doi":"10.3724/SP.J.1123.2016.07020","fpage":"216","id":"b566fbb4-375e-4b65-9c70-21b327c1cbe5","issue":"2","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"901d0928-8dd4-4b2f-8f32-bdbd6c1c1e92","keyword":"重力场流分离","originalKeyword":"重力场流分离"},{"id":"49787e75-2dd2-473c-b3cf-0cacf9648c71","keyword":"均匀设计","originalKeyword":"均匀设计"},{"id":"062cc252-76a8-41c9-9083-a16f942d18dc","keyword":"聚苯乙烯颗粒","originalKeyword":"聚苯乙烯颗粒"},{"id":"928ea272-0985-4c37-973c-935791cc002c","keyword":"载液","originalKeyword":"载液"},{"id":"a9cffde5-0fee-418b-90e8-2f616542edc1","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"d7ef2cf5-208c-46d0-b451-6724741e94d1","keyword":"流速","originalKeyword":"流速"},{"id":"bdc47045-f5ce-4988-8ac8-101b4d0f8e6a","keyword":"分离度","originalKeyword":"分离度"}],"language":"zh","publisherId":"sp201702012","title":"重力场流分离系统用于聚苯乙烯颗粒的分离条件优化","volume":"35","year":"2017"},{"abstractinfo":"对采用流态化技术,还原多钒酸铵(APV)制取三氧化二钒工艺及相关参数进行了研究,得到了合格的三氧化二钒产品.试验表明: APV在还原温度700~750 ℃、保温时间10~15 min的条件下可以得到TV≥63%的三氧化二钒产品,比回转窑方法所需时间短、温度低;更容易实现对温度和时间的控制,得到较高品位的三氧化二钒产品(TV>67%);流态化生产的三氧化二钒产品C含量低,更有利于钒铁冶炼对C含量的控制;同时,流态化生产三氧化二钒效率高、还原剂消耗少、设备固定、相对安全性更高.","authors":[{"authorName":"张帆","id":"6577b0c8-80d6-4c2c-bfbe-554caedf98c3","originalAuthorName":"张帆"}],"doi":"","fpage":"27","id":"3a2cc00c-033f-4900-bc20-557155ce9a11","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"49287363-765d-4c5d-87ab-a21af0ffe05e","keyword":"三氧化二钒","originalKeyword":"三氧化二钒"},{"id":"b8cdd8b9-ecae-46cd-9dfc-4e56b797b047","keyword":"流态化床","originalKeyword":"流态化床"},{"id":"2fb76fff-884f-43f3-b281-76ace9c734dc","keyword":"多钒酸铵","originalKeyword":"多钒酸铵"}],"language":"zh","publisherId":"gtft200803006","title":"流态化制取三氧化二钒研究","volume":"29","year":"2008"},{"abstractinfo":"超流氦的沸腾现象具有一般流体的沸腾现象所没有的特异性质.本文运用粒子示踪法对由不同沸腾状态所引起的流态进行了可视化测量并重构了由沸腾所引起的流态图,同时对沸腾过程中的压力振荡进行了测量,并对过渡沸腾状态出现的两种可能性和机理进行了分析.","authors":[{"authorName":"张鹏","id":"6ac95417-b482-46fa-b261-047d3b801544","originalAuthorName":"张鹏"},{"authorName":"王如竹","id":"caf3a9a9-4936-42d7-92fd-56c3c9a007f8","originalAuthorName":"王如竹"}],"doi":"","fpage":"209","id":"cae1b1b6-ed28-4372-b214-ffe4fdb0b129","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"592da2e5-8afc-41b5-9fde-c38429b3adb3","keyword":"粒子示踪法","originalKeyword":"粒子示踪法"},{"id":"e2fe540e-a9e1-4699-bc16-f62131961532","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"a134b6d3-0ea4-4207-adc6-f673ee995aa8","keyword":"压力振荡","originalKeyword":"压力振荡"}],"language":"zh","publisherId":"gcrwlxb200202022","title":"超流氦沸腾过程中的流态测量研究","volume":"23","year":"2002"}],"totalpage":2078,"totalrecord":20771}