{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用基于密度泛函理论(DFT)框架下广义梯度近似平面波超软赝势法,计算了Cmcm空间群SrHfO3的电子结构和光学性质.计算得到的CmcmSrHfO3的平衡晶格常数均与实验值相近.同时,计算得到了CmcmSrHfO3的能带结构、态密度和电荷密度.结果表明,SrHfO3属于直接带隙氧化物,在Hf和O之间主要是共价键结合而在Sr和O之间主要呈现离子键特性.计算还得到了SrHfO3的复介电函数、折射率和消光系数等,且复介电函数的实部与虚部都与实验结果接近.","authors":[{"authorName":"田浩","id":"130610a7-ccb0-429a-b914-4e9e791915dc","originalAuthorName":"田浩"},{"authorName":"冯丽萍","id":"2eb43139-6429-4f94-b796-bd8cbcbb1f4c","originalAuthorName":"冯丽萍"},{"authorName":"刘正堂","id":"2420226f-4d41-4522-996c-1a6f8d58afcd","originalAuthorName":"刘正堂"}],"doi":"","fpage":"881","id":"a365040c-7548-44c9-a6da-1b1db3eb2a0e","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"009a4af2-4b59-4df3-a9c4-5619b9e58894","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"ccd0dff5-5a38-4be6-a792-47e5dbe9638f","keyword":"光学性质","originalKeyword":"光学性质"},{"id":"4dcaa2e8-3392-40b6-8085-7bed9be14679","keyword":"SrHfO3","originalKeyword":"斜方SrHfO3"}],"language":"zh","publisherId":"xyjsclygc201604011","title":"Cmcm空间群SrHfO3的电子结构和光学性质理论计算","volume":"45","year":"2016"},{"abstractinfo":"采用第一性原理研究了压力对正交相SrHfO3电子结构的影响.正交相SrHfO3在零压力时的结构参数与已有的实验值和理论计算值一致.当施加的压力小于20 GPa时,正交相SrHfO3的最小间接带隙在Z-Г之间.当施加的压力大于20 GPa时,正交相SrHfO3的最小间接带隙在S-Г之间.随着压力的增加,正交相SrHfO3的态密度向低能量方向移动.电荷密度分析表明,Hf-O之间主要以共价键结合,Sr-O之间主要以离子键结合.随着压力的增加,Hf-O共价键和Sr-O离子键增强,而Sr-HfO3之间的离子交互作用减弱.","authors":[{"authorName":"冯丽萍","id":"739a4ead-722a-400a-a1cc-ee8456be1f4b","originalAuthorName":"冯丽萍"},{"authorName":"贾瑞涛","id":"015b59d8-72c7-4d83-83b4-35f88a48c419","originalAuthorName":"贾瑞涛"},{"authorName":"刘正堂","id":"28816779-a65f-47e9-9d02-bcb1662f86e4","originalAuthorName":"刘正堂"}],"doi":"","fpage":"2619","id":"3f263fa5-2992-42a5-b351-79aad7899088","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bdfeb32f-c84c-4c9b-9914-782b02d6aff6","keyword":"第一性原理","originalKeyword":"第一性原理"},{"id":"1bbc9fd2-2187-48d8-bfd0-36aeba181a97","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"362a8d41-b513-451e-a744-4c46cd9ecae5","keyword":"SrHfO3","originalKeyword":"SrHfO3"},{"id":"d5947dcd-b29b-4586-bcfe-6383ace262bc","keyword":"压力","originalKeyword":"压力"}],"language":"zh","publisherId":"xyjsclygc201411013","title":"第一性原理研究不同压力下正交相SrHfO3的电子结构","volume":"43","year":"2014"},{"abstractinfo":"采用基于密度泛函理论的平面波超软赝势方法研究了正交相SrHfO3和以Si替换Hf方式形成的掺杂态SrHfO3的形成能,几何结构,电子结构和光学性质.负的形成能表明在由单元素形成Si掺杂态的SrHfO3的反应中,Si占居Hf位置与Sr位置两种情况在能量上是有利的,并且Si原子更加倾向于占居Hf位置.纯的SrHfO3计算得到的晶格常数与文献报道的实验值和理论值是一致的,而Si占居Hf位置后会导致SrHfO3的晶格常数减小.能带结构显示在掺入Si原子后会使带隙变小.布居分析与电荷密度图一致,说明在Hf位置掺入Si后掺杂位置附近的Hf-O键以共价键为主,Sr-O键以离子键为主.最后,对Si掺杂后SrHfO3在(100)方向上的介电常数、反射率、吸收系数、折射率进行了计算与分析.","authors":[{"authorName":"樊淼海","id":"a570a1be-b00a-408a-9c96-dcdb6ca61b9d","originalAuthorName":"樊淼海"},{"authorName":"刘正堂","id":"03cad64a-4fae-484d-9d3f-0ee22ad11c28","originalAuthorName":"刘正堂"},{"authorName":"冯丽萍","id":"f2386af7-1e29-443d-8ab9-856f2203c2b7","originalAuthorName":"冯丽萍"},{"authorName":"刘其军","id":"70952c2e-e95d-4a75-9d3b-4fe85f7f14c3","originalAuthorName":"刘其军"}],"doi":"","fpage":"1079","id":"49a32ab2-fdef-452d-b910-9e1e466f295d","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"14515033-bddf-4cc9-a28a-30a053e8fc99","keyword":"第一性原理","originalKeyword":"第一性原理"},{"id":"14d2b56a-c08a-4560-a634-dc7571143c2a","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"89c937c3-25b5-4c6f-95c8-55711f9f598a","keyword":"光学性质","originalKeyword":"光学性质"},{"id":"b6f0795d-7211-4862-9659-18c132f715e0","keyword":"Si掺杂正交相SrHfO3","originalKeyword":"Si掺杂正交相SrHfO3"}],"language":"zh","publisherId":"xyjsclygc201405011","title":"Si掺杂正交相SrHfO3电子结构与光学性质的第一性原理计算","volume":"43","year":"2014"},{"abstractinfo":"用溶胶-凝胶法(Sol-Gel)合成SrHfO3:Ce纳米粉体,研究煅烧温度及pH值对前驱体的作用以及掺杂不同含量Ce3+对试样发光特性的影响.用TG-DTA、XRD、SEM等测试手段对试样进行了表征.结果表明:溶胶pH值控制在2.8时,经900℃煅烧得到SrHfO3:Ce粉体粒度均匀,粒径约为50 nm,掺杂Ce摩尔含量1.5%时试样的发光相对峰值最高.385 nm波长作用下激发光谱存在200~340 nm宽带谱,分别在218,242,308 nm波长处出现3个激发峰.用218 nm激发的发射光谱在380,487和526 nm处分别有3个峰值谱带;242 nm激发处有一个谱带峰值在393 nm波长处;308 nm激发的发射光谱有一谱带,峰值在403 nm处,后两者发射光谱的相对强度比前者弱,原因是由于稀土Ce3+离子能级之间的跃迁几率存在差异造成.","authors":[{"authorName":"张佳珞","id":"a0543675-f578-4e47-91c0-221bccf7475a","originalAuthorName":"张佳珞"},{"authorName":"马伟民","id":"506487da-dfff-43c0-adef-2592a1d397d0","originalAuthorName":"马伟民"},{"authorName":"闻雷","id":"dfb8011c-4a39-4acc-93ca-e640150aee00","originalAuthorName":"闻雷"},{"authorName":"尹凯","id":"746b98b8-3a9f-4302-ac39-6eccdee1a742","originalAuthorName":"尹凯"},{"authorName":"王华栋","id":"f5f433be-f759-47c8-b5a9-601c04e99044","originalAuthorName":"王华栋"},{"authorName":"安玉良","id":"394a8d67-84ac-41cb-8991-e1a86691cc19","originalAuthorName":"安玉良"}],"doi":"","fpage":"1304","id":"d264e716-ebf9-42e5-ac7a-e03bb4b1b9df","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"cce9a1af-c2a9-484a-b452-2454e4f635e9","keyword":"闪烁体","originalKeyword":"闪烁体"},{"id":"390cfdbd-e28b-4b8b-88b6-381707805fb9","keyword":"Sol-Gel法","originalKeyword":"Sol-Gel法"},{"id":"131e8f87-8154-4c7a-acfa-251b38e533f1","keyword":"SrHfO3","originalKeyword":"SrHfO3"},{"id":"65c0ecce-1ad6-4487-a680-e02978313dcd","keyword":"Ce纳米粉体","originalKeyword":"Ce纳米粉体"},{"id":"84d8c943-54c4-471d-88f0-d697b980e74a","keyword":"发光特性","originalKeyword":"发光特性"}],"language":"zh","publisherId":"xyjsclygc200907041","title":"Sol-Gel法制备SrHfO3:Ce闪烁材料及发光特性","volume":"38","year":"2009"},{"abstractinfo":"用一步固相法合成了锰酸锂,对其进行了表征并确定了前驱体化合物烧结中的转变过程,以及相互化合间的烧结机制.结果表明,随着煅烧温度的升高,杂相减少,生长出主体相锰酸锂.在700℃以上可以生成均一相的层状类球状和棒状锰酸锂颗粒.两种颗粒的粒度分别为1~5 μm和5~15 μm.在充放电循环中,锰酸锂结构易于向尖晶石结构转变.在2.5~4.5 V范围内以20 mA/g电流进行充放电循环,锰酸锂的初始充电容量达到247 mAh/g,放电容量为133 mAh/g,50次循环后,容量保持率为92%.","authors":[{"authorName":"李义兵","id":"17b68966-10fb-4178-92b3-d98fe911919e","originalAuthorName":"李义兵"},{"authorName":"陈白珍","id":"92ff3a8e-067f-4e93-aa90-7c76feabcaa5","originalAuthorName":"陈白珍"},{"authorName":"李改变","id":"b9f3111b-f690-43a9-a79c-337289761948","originalAuthorName":"李改变"},{"authorName":"金基明","id":"ae5b7d3e-da4a-4627-994e-e2b951292838","originalAuthorName":"金基明"}],"doi":"10.3321/j.issn:1005-3093.2006.01.018","fpage":"83","id":"36458610-cc71-4ea3-8f54-909a0c713a3a","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"5e795e61-0e7d-477f-b707-e6d998fcdb30","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"cffbcf57-c065-418a-bd5e-6980520cbcd4","keyword":"锰酸锂","originalKeyword":"斜方锰酸锂"},{"id":"8461b02c-24fe-4dda-ad61-62d064fb7b8e","keyword":"固相法","originalKeyword":"固相法"},{"id":"fc01bc42-a8c6-472c-9cde-c9e4b39ea93f","keyword":"电化学行为","originalKeyword":"电化学行为"}],"language":"zh","publisherId":"clyjxb200601018","title":"锂离子电池锰酸锂阴极材料的合成与表征","volume":"20","year":"2006"},{"abstractinfo":"研究了TC21两相钛合金淬火后马氏体在时效过程中的组织结构变化及其引起的强化效应.结果表明:合金淬火后得到交错排列的针状马氏体组织,在300-700℃之间时效4h,α\"相的分解次序遵循α\"→α\"+α→α+β规律.低温时效时首先形核析出针状的初生α相,随着时效温度的升高,初生α相在长大的同时其片层之间析出十几纳米宽、几个微米长的细小次生α相,且β相呈10~50 nm大小的颗粒状弥散分布在α相之间,随后的时效过程中次生α相和β相迅速长大,最终马氏体完全分解为α+β混合相.显微硬度分析表明,利用马氏体的逆转变,通过在时效过程中均匀地析出细小的次生α相和纳米级弥散分布的β相可使合金具有明显的时效强化效果,500℃时效4h后,TC21合金的显微硬度比淬火态提高了35%.","authors":[{"authorName":"何宜柱","id":"f29eb98b-63d9-41b1-a992-157a910718b3","originalAuthorName":"何宜柱"},{"authorName":"张文学","id":"8354bd3c-457b-4bbc-b1ec-ab2c4eec9e51","originalAuthorName":"张文学"},{"authorName":"周红伟","id":"da0cf16c-4b13-4eed-b14d-258093d5be7a","originalAuthorName":"周红伟"},{"authorName":"卢亚锋","id":"e38a4acb-b08f-48d1-aad5-46050fb3d653","originalAuthorName":"卢亚锋"},{"authorName":"奚正平","id":"2de5b33a-11a9-4ae5-8db3-db3dccb86fe1","originalAuthorName":"奚正平"}],"doi":"","fpage":"800","id":"b88cdf1c-00e6-4b34-95a0-f50947468d6d","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c2bcc6f8-a4c5-4624-b679-bf6eb866ed0a","keyword":"TC21合金","originalKeyword":"TC21合金"},{"id":"006bd1c6-f1e0-4473-a5db-1a5444b85517","keyword":"时效","originalKeyword":"时效"},{"id":"a2f62376-9a80-4718-b189-4ba270ae54df","keyword":"马氏体","originalKeyword":"斜方马氏体"},{"id":"5ee0ce4d-bab9-4126-9952-4fb454374afd","keyword":"硬化","originalKeyword":"硬化"}],"language":"zh","publisherId":"xyjsclygc201205011","title":"TC21两相钛合金中马氏体的时效分解","volume":"41","year":"2012"},{"abstractinfo":"磷酸三钙晶体是磷酸钙生物骨水泥原料的一种,由于它简便易得而得到广泛的研究和应用.将磷酸盐或磷酸盐与碳酸钙的混合粉体在1200~1400℃下煅烧,然后急冷获得单斜α相磷酸三钙晶体,磨细后即可为磷酸三钙骨水泥,虽然比较容易制备,但力学性能很低.本文所制备的磷酸三钙晶体与以往不同,而是通过添加少量的添加剂,制得以α相磷酸三钙晶体为主要成份的固相反应产物,经磨细后与磷酸氢钙以一定的比例混合,得到新型高温型磷酸三钙生物骨水泥.用蒸馏水调和后置于温度为37℃,湿度为100%的条件下,24h后获得的固化体的抗折强度为9.31MPa,同样水化条件下常用的低温单斜α磷酸三钙骨水泥的抗折强度为5.81MPa,强度提高60%.通过X射线衍射对高温固相反应产物、水化产物的组成进行了分析,并用扫描电镜对两种骨水泥水化体的内部结构进行了对比观察.","authors":[{"authorName":"赵萍","id":"64cd2a9c-d61b-4004-b9d3-c888c603b48b","originalAuthorName":"赵萍"},{"authorName":"孙康宁","id":"27fde5a4-eb19-4ce8-8978-3bf1f17bfe2a","originalAuthorName":"孙康宁"}],"doi":"10.3969/j.issn.1000-985X.2005.01.007","fpage":"29","id":"308e902d-4eb4-4440-bb8f-9767d16585ba","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c225b218-3952-422b-8d98-58850cd02d03","keyword":"晶系","originalKeyword":"斜方晶系"},{"id":"fc8b5b7b-0004-483c-b4f9-3044e0c7dd06","keyword":"磷酸三钙","originalKeyword":"磷酸三钙"},{"id":"4c6790b6-1536-435d-b75b-279c2996e598","keyword":"抗折强度","originalKeyword":"抗折强度"}],"language":"zh","publisherId":"rgjtxb98200501007","title":"晶系α-磷酸三钙晶体的制备及应用","volume":"34","year":"2005"},{"abstractinfo":"从唯象理论出发,推导了立方相向正方、和以不同单斜结构描述的马氏体转变的一般公式。对一种典型热弹性材料-TiNi,提出若干种可能的马氏体相变模型,进行计算机模拟。结果,对于马氏体结构模型为α=0.2889,b=0.4120,c=0.4622nm,β=96.8°的TiNi[简称TiNi(β)]的相变孪生模型是K_1=(111)_M,(111)_M(第Ⅰ类孪晶)和η_1=[110]_M(第Ⅱ类孪晶);对于马氏体结构模型为α=0.2885,b=0.4622,c=0.4120nm,γ=96.8°的TiNi[简称TiNi(γ)]是K_1=(111)_M,和(111)_M(第Ⅰ类孪晶).它们满足“相界面是一个平均畸变为零的平面”的条件,并且与有关作者提供的实验数据吻合较好。","authors":[{"authorName":"李永森","id":"50bb47cc-5cd3-4bdc-8ca9-1e1d14f79cc3","originalAuthorName":"李永森"}],"categoryName":"|","doi":"","fpage":"112","id":"3618a633-b038-4a0f-9b7c-040329f36ff6","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1986_5_12","title":"立方相向正方、和单斜马氏体转变的计算机模拟 Ⅰ.两种单斜结构模型的TiNi马氏体","volume":"22","year":"1986"},{"abstractinfo":"采用化学共沉淀法制备Fe3O4磁流体,再与发沸石复合制备一系列不同Fe3O4载量的磁性发沸石,并进行X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)等表征分析,测定了其磁分离回收率及Cu2+、Zn2+、Cd2+的饱和交换吸附量.结果表明,Fe3O4微粒赋存于发沸石表面或相互聚集,磁性发沸石磁稳定性好,并具有良好的超顺磁性,其对Cu2+、Zn2+、Cd2+的交换吸附性能与其所含发沸石相当,但随Fe3O4载量增加而降低.Fe3O4载量为25wt%时,其饱和磁化强度Ms、剩余磁化强度Mr分别为14.787和0.398A·m2/kg,磁分离回收率为94.6%,Cu2+、Zn2+、Cd2+的饱和交换吸附量分别为12.3、12.0和23.4mg/g.磁性发沸石经磁分离回收并放置于空气中100d后仍保持良好的超顺磁性和较高的磁分离回收率.
","authors":[{"authorName":"王维清","id":"189efc2d-95a9-40e3-bab3-115285e15eaa","originalAuthorName":"王维清"},{"authorName":"冯启明","id":"a90765df-63e0-4c47-86be-bd89679a96a1","originalAuthorName":"冯启明"},{"authorName":"董发勤","id":"02055247-f9b9-4407-ae46-ce29ed4511e8","originalAuthorName":"董发勤"},{"authorName":"李虎杰","id":"46a21633-9df7-430f-8a4d-9c69bc08a397","originalAuthorName":"李虎杰"},{"authorName":"赵晓东","id":"cd58d53a-ed75-401e-b769-dae534652084","originalAuthorName":"赵晓东"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.00401","fpage":"401","id":"8e2d8246-0f4d-4a1c-9344-8d925f5d699a","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3734efc6-5f0f-4d0d-a925-e0ff7ff028d3","keyword":"磁性发沸石","originalKeyword":"磁性斜发沸石"},{"id":"70642a84-185e-416f-b46f-f1ca22e977a6","keyword":" magnetic property","originalKeyword":" magnetic property"},{"id":"a6136db9-8277-464b-bff6-8bc95ee86a7d","keyword":" magnetic recovery rate","originalKeyword":" magnetic recovery rate"},{"id":"3a36cfbc-bc09-4741-a7e8-1d7ff7c508ef","keyword":" saturation exchange-adsorption capacity","originalKeyword":" saturation exchange-adsorption capacity"}],"language":"zh","publisherId":"1000-324X_2010_4_9","title":"Fe3O4/发沸石磁性复合材料的制备及其性能","volume":"25","year":"2010"},{"abstractinfo":"采用化学共沉淀法制备Fe_3O_4磁流体,再与发沸石复合制备一系列不同Fe_3O_4载量的磁性发沸石,并进行X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)等表征分析,测定了其磁分离回收率及Cu~(2+)、Zn~(2+)、Cd~(2+)的饱和交换吸附量.结果表明,Fe_3O_4微粒赋存于发沸石表面或相互聚集,磁性发沸石磁稳定性好,并具有良好的超顺磁性,其对Cu~(2+)、Zn~(2+)、Cd~(2+)的交换吸附性能与其所含发沸石相当,但随Fe_3O_4载量增加而降低.Fe_3O_4载量为25wt%时,其饱和磁化强度M_s、剩余磁化强度M_r分别为14.787和0.398A·m~2/kg,磁分离回收率为94.6%,Cu~(2+)、Zn~(2+)、Cd~(2+)的饱和交换吸附量分别为12.3、12.0和23.4mg/g.磁性发沸石经磁分离回收并放置于空气中100d后仍保持良好的超顺磁性和较高的磁分离回收率.","authors":[{"authorName":"王维清","id":"f6216d26-abe9-4508-b270-3cd08266757b","originalAuthorName":"王维清"},{"authorName":"冯启明","id":"b6f6ea74-e131-4dcf-a03b-c12c267e7506","originalAuthorName":"冯启明"},{"authorName":"董发勤","id":"6dfa608e-d321-4233-b5cd-b5f84fadae14","originalAuthorName":"董发勤"},{"authorName":"李虎杰","id":"e8204538-20e2-4c97-a322-66f1afe512a2","originalAuthorName":"李虎杰"},{"authorName":"赵晓东","id":"ff557a03-2673-41bc-8ca3-84074021be8b","originalAuthorName":"赵晓东"}],"doi":"10.3724/SP.J.1077.2010.00401","fpage":"401","id":"f19a4035-b19a-4b47-92ce-e5e3014e7f16","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5b9309d8-3f19-4bb6-bccf-3cab4f0f69ed","keyword":"磁性发沸石","originalKeyword":"磁性斜发沸石"},{"id":"65c5cdc1-52de-44ec-aa2b-e82a84c293dd","keyword":"磁性能","originalKeyword":"磁性能"},{"id":"076b621a-6466-40dc-931e-05ee578f8545","keyword":"磁分离回收率","originalKeyword":"磁分离回收率"},{"id":"cdc391c8-b514-4e71-b9b2-103469dfffd3","keyword":"饱和交换吸附量","originalKeyword":"饱和交换吸附量"}],"language":"zh","publisherId":"wjclxb201004013","title":"Fe_3O_4/发沸石磁性复合材料的制备及其性能","volume":"25","year":"2010"}],"totalpage":6508,"totalrecord":65077}