{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用商品PtRu黑和Pt黑催化剂制备成甲醇阳极和氧阴极,Nafion(R)-117为固体电解质膜,组装成活性面积为6.4516cm2的电池,研究了电池的极化与功率特性以及电池在放电运转过程中各种操作条件,如甲醇进样浓度、阴极氧化剂种类和压力、操作温度、燃料和氧化剂的进样方向等对电池性能的影响,并考察了电池的放电性能.结果表明:电池极化曲线由3个特征区构成,最大功率密度约为15mW/cm2;甲醇浓度对电池性能的影响与电池运行温度有关;较之纯氧,以空气作为氧化剂时电池的性能有所降低,随着空气压力的增加电池的性能有所提高;随着操作温度的升高电池性能明显改善;阳极甲醇由下往上进样,同时阴极空气由上往下进样时电池性能最好;电池在放电过程中具有性能自恢复特征.","authors":[{"authorName":"彭程","id":"473a7333-8efd-4163-ad72-1796509f781c","originalAuthorName":"彭程"},{"authorName":"张震","id":"e302cd8a-ab34-4daf-866e-a8dc2a4dfed0","originalAuthorName":"张震"}],"doi":"","fpage":"141","id":"12fd40e0-aa5b-42e4-a1de-21dee1d65c80","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a04c1674-7acd-4a90-a473-4da9f0d2ee4b","keyword":"直接甲醇燃料电池","originalKeyword":"直接甲醇燃料电池"},{"id":"bd1a2867-4dc1-44db-b0a1-ecc9d66d6be8","keyword":"电池","originalKeyword":"单电池"},{"id":"3c1a32e1-d517-4561-a7b3-ca6f055571dc","keyword":"电池性能","originalKeyword":"电池性能"},{"id":"7755a1fb-02bd-48b2-b0f2-e9fa7d639329","keyword":"极化曲线","originalKeyword":"极化曲线"}],"language":"zh","publisherId":"cldb200702037","title":"液相进样直接甲醇燃料电池性能研究","volume":"21","year":"2007"},{"abstractinfo":"通过溶胶混合法将超级电容器材料RuO_2负载到Pt/C上,制成了Pt/C-RuO_2催化剂,并用这种催化剂组装成质子交换膜燃料电池(PEMFC)电池,测试了其循环伏安曲线和多电位阶跃计时电流.结果表明,加入RuO_2之后,催化剂的双电层电容明显增大.电池的放电曲线测试结果表明,在加入少量RuO2(w≤8%)的情况下,电池的性能略有降低.通过电池在不同电流下电压动态响应和对脉冲电流的动态响应测试,表明在加入RuO_2之后,电池电压的瞬间衰减明显减缓.这说明RuO_2具有在瞬间加大电流负载时缓冲电池电压的作用,即以Pt/C-RuO_2为催化剂的PEMFC电池的动态响应性能大幅度提高.","authors":[{"authorName":"韩亚坤","id":"77387696-feb9-4d8d-8617-f42bdcfc5720","originalAuthorName":"韩亚坤"},{"authorName":"徐洪峰","id":"1f7bad54-7c29-4c85-8b2c-90018713ab0e","originalAuthorName":"徐洪峰"},{"authorName":"卢璐","id":"5ef35569-bb24-414e-8e0c-01f916f68f13","originalAuthorName":"卢璐"}],"doi":"","fpage":"1063","id":"f16708a7-4968-4727-8ca8-53cafbd7a1c0","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"a54d45f4-53f0-48d1-94a6-1bfa00278a45","keyword":"质子交换膜燃料电池","originalKeyword":"质子交换膜燃料电池"},{"id":"910c79dd-738c-4fe0-88bf-f3ca514e1050","keyword":"电池","originalKeyword":"单电池"},{"id":"1e7b057a-7d67-4c28-8c94-6b3cc739db6e","keyword":"动态响应","originalKeyword":"动态响应"},{"id":"4884fcb9-5b1a-4696-91cd-4b561102749c","keyword":"铂","originalKeyword":"铂"},{"id":"c5d64070-7582-4d0a-baf4-9314fd073190","keyword":"碳","originalKeyword":"碳"},{"id":"2e85de9c-9901-4eaf-96dc-c08015a1934b","keyword":"二氧化钉","originalKeyword":"二氧化钉"}],"language":"zh","publisherId":"cuihuaxb200910017","title":"Pt/C-RuO_2催化剂对提高质子交换膜燃料电池动态响应性能的作用","volume":"30","year":"2009"},{"abstractinfo":"为了制备高性能大面积固体氧化物燃料电池(SOFC)电池,解决由于面积过大而导致的电池上气体分配不均匀及各部分温度差异,通过实验设计测试了电池的各个区域的性能,包括局部电性能和局部温度.实验在1片10cm×10cm(有效反应面积9cm×9cm)的阳极支撑SOFC电池上进行,电池的阴极以及空气气体分配板和集流器都被分成电绝缘的9个分块单元.每个分块单元的面积是2.8cm×2.8cm,均布置有独立的电流电压监测及温度监测系统.同时,利用计算流体力学模拟计算阴极侧的气体流场分布,并将计算的结果与实验测量结果进行了比较.模拟计算和实验测量的结果均显示大面积电池存在局部的气体分布不均匀及其导致的性能不均匀,这为大面积SOFC电池的性能优化及电堆模块的设计提供依据.","authors":[{"authorName":"汪杰","id":"ae4018f7-2ffb-4e4b-9df5-799800c80d5c","originalAuthorName":"汪杰"},{"authorName":"颜冬","id":"30e0cca3-555c-473e-8ccc-dc0b971c2a59","originalAuthorName":"颜冬"},{"authorName":"朱彬","id":"2a4f4fce-9164-461d-8775-0c49af5b500b","originalAuthorName":"朱彬"},{"authorName":"池波","id":"75d00f2f-66eb-4243-91fd-ff75d3dc7055","originalAuthorName":"池波"},{"authorName":"蒲健","id":"30624d0f-2cdc-43db-87a8-cbae345b3ea5","originalAuthorName":"蒲健"},{"authorName":"张宜生","id":"4379a10d-96a5-434d-ba36-f2de8e04a9b6","originalAuthorName":"张宜生"},{"authorName":"李箭","id":"f1f098e0-5971-46c7-9c2b-832b95592236","originalAuthorName":"李箭"}],"doi":"","fpage":"951","id":"d44df9cb-7819-4ca3-9ba7-dbe6d740c95d","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bd6e45e0-aa2d-4b79-b7e9-097f2590a400","keyword":"固体氧化物燃料电池","originalKeyword":"固体氧化物燃料电池"},{"id":"aa6877e2-e173-4ca9-b1a4-c4879e149ca3","keyword":"局部性能","originalKeyword":"局部性能"},{"id":"d8d238e3-8ed1-41a5-a15f-d763975d92a0","keyword":"气体分布","originalKeyword":"气体分布"},{"id":"fc9e3121-6e76-437a-97c4-13d25f1bc1a3","keyword":"计算流体力学","originalKeyword":"计算流体力学"}],"language":"zh","publisherId":"gncl201105047","title":"SOFC电池局部性能的评价与测试","volume":"42","year":"2011"},{"abstractinfo":"使用浆料旋涂法制备了致密氧化钇稳定的氧化锆电解质薄膜,进而组装成阳极支撑型气室固体氧化物燃料电池.该电池在CH4,N2和O2混合气氛下运行,可产生很高的输出性能.在700℃时开路电压达到1 V,最大功率密度达到398 mW/cm2.在开路状态下,电池的欧姆电阻为0.097 Ω·cm2,仅为电极阻抗的6.4%,远小于电极极化电阻.通过优化电极材料,阳极支撑型气室固体氧化物燃料电池将具有更优异的输出性能和更广阔的应用前景.","authors":[{"authorName":"艾刚","id":"f0052e9f-5178-47d3-ab12-cb54a6cc6da8","originalAuthorName":"艾刚"},{"authorName":"吕喆","id":"a14275b9-cd56-4738-aea4-43961b5b1f48","originalAuthorName":"吕喆"},{"authorName":"魏波","id":"02a92894-c79b-48ae-959c-df4046d5d632","originalAuthorName":"魏波"},{"authorName":"黄喜强","id":"20e71b98-9e96-476f-8029-5f39910fcc4b","originalAuthorName":"黄喜强"},{"authorName":"陈孔发","id":"667feb74-66e2-4900-bd86-3a599f9490fa","originalAuthorName":"陈孔发"},{"authorName":"苏文辉","id":"024eada6-a463-4f02-9e53-65c279ceecff","originalAuthorName":"苏文辉"}],"doi":"","fpage":"885","id":"38b70fd7-0181-4fcc-b44c-ec2f49302d56","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"46d45b57-e928-4225-8351-5781bf94dbe0","keyword":"气室","originalKeyword":"单气室"},{"id":"e03c3c3b-d653-4cb0-b3fe-104e42272cca","keyword":"固体氧化物","originalKeyword":"固体氧化物"},{"id":"d3f6df19-1873-4e39-83b9-39deb5f1e430","keyword":"燃料电池","originalKeyword":"燃料电池"},{"id":"2491d3e2-b58f-4251-b75b-b0c710f8b825","keyword":"阳极支撑型电池","originalKeyword":"阳极支撑型电池"},{"id":"82817b0c-cb53-49e0-ba86-bdbe187d7f8f","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"17beb8c5-2aae-4627-8bd9-2298e25dba21","keyword":"氮","originalKeyword":"氮"},{"id":"99e5cfa4-4e6f-4e03-aad6-e9c2e37f7ea3","keyword":"氧","originalKeyword":"氧"},{"id":"926895f6-5b64-4b46-8fff-9284d5816285","keyword":"选择催化","originalKeyword":"选择催化"},{"id":"a31512fd-3f4f-4b7a-bcd4-e48e004b8dbe","keyword":"阻抗谱","originalKeyword":"阻抗谱"}],"language":"zh","publisherId":"cuihuaxb200610011","title":"阳极支撑型气室固体氧化物燃料电池的性能","volume":"27","year":"2006"},{"abstractinfo":"实验研究了阳极分别采用蛇形和交指型流场的室微生物燃料电池(MFC)性能,发现采用蛇形流场的室MFC 不仅启动时间较快,而且性能较好.通过对中间腔室侧的阴阳极电极表面SEM表征发现,阳极采用交指型流场的室MFC阴阳极表面均有生物膜存在,这部分额外的生物膜阻碍了阴阳极之间的氢离子传输,从而导致阳极采用交指型流场的MFC欧姆内阻增加,电池性能恶化.研究还发现当中间腔室厚度为20 mm时,阳极采用蛇形流场的室MFC性能最佳.","authors":[{"authorName":"李明","id":"81792080-ee49-4b1c-b1a1-954f5cf30dbe","originalAuthorName":"李明"},{"authorName":"李俊","id":"be4bff93-ec65-4809-bc38-9c3b55a1cc65","originalAuthorName":"李俊"},{"authorName":"朱恂","id":"b74595af-21d7-4db3-a9f7-90991df14a37","originalAuthorName":"朱恂"},{"authorName":"叶丁丁","id":"63b2bee6-712e-4470-b054-29edb36c7dcb","originalAuthorName":"叶丁丁"},{"authorName":"廖强","id":"84a582cd-dcd9-430d-a777-6b6a4c6d083a","originalAuthorName":"廖强"}],"doi":"","fpage":"855","id":"85978f60-bfa4-4760-9d3d-526d9c6f146b","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8146654c-8a59-40f8-9db9-5df0c0cf1216","keyword":"室微生物燃料电池","originalKeyword":"单室微生物燃料电池"},{"id":"1c29801b-6fd1-4992-b798-9566833447c0","keyword":"流场结构","originalKeyword":"流场结构"},{"id":"de67145a-de81-46a6-9ec8-76bd07533d60","keyword":"生物膜","originalKeyword":"生物膜"},{"id":"956496e1-f41b-493c-bebc-7bb7966ac428","keyword":"电池性能","originalKeyword":"电池性能"}],"language":"zh","publisherId":"gcrwlxb201105034","title":"阳极流场对室微生物燃料电池性能的影响","volume":"32","year":"2011"},{"abstractinfo":"综述了蒸发法、溅射后硒化法、靶直接溅射法制备CIGS光吸收层的工艺和电池性能,比较了它们的优缺点;详细介绍了粉末冶金参数(如烧结温度、压力、时间)对制备CIGS靶材致密度、成分均匀性的影响;着重阐述了靶溅射工艺参数(如衬底温度、溅射功率、工作气压)对沉积的CIGS薄膜的相结构、形貌、光学及电学性能的影响.","authors":[{"authorName":"王丹","id":"7065a9c6-544b-4f98-8213-45bc51c87bb9","originalAuthorName":"王丹"},{"authorName":"余洲","id":"24c6dde5-fddb-4e1f-98fc-92aa9a4c01e3","originalAuthorName":"余洲"},{"authorName":"冀亚欣","id":"6f15f3b0-f349-466a-bee6-66832bd6b5a8","originalAuthorName":"冀亚欣"},{"authorName":"闫勇","id":"6a5ed3c9-0870-4a26-bf18-bb2f1ec1f1d6","originalAuthorName":"闫勇"},{"authorName":"欧玉峰","id":"b3623559-ae5b-42cf-bdb0-6d6e1bae96ad","originalAuthorName":"欧玉峰"},{"authorName":"晏传鹏","id":"561ae5a2-70b4-4c27-9aa4-09cea6e01be1","originalAuthorName":"晏传鹏"},{"authorName":"刘连","id":"56efc181-de2f-421a-a810-51d749fbc5d4","originalAuthorName":"刘连"},{"authorName":"张勇","id":"e0c27398-5729-4179-9c94-e5f28927bbb2","originalAuthorName":"张勇"},{"authorName":"赵勇","id":"45f0e0e7-d413-416d-90b2-872af846ecb8","originalAuthorName":"赵勇"}],"doi":"10.11896/j.issn.1005-023X.2016.03.025","fpage":"128","id":"81aeb86e-7f16-4903-8829-aa4a74141978","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bf6b22f4-70f1-44ac-b51c-fd540127d1fa","keyword":"CIGS电池","originalKeyword":"CIGS电池"},{"id":"57cc8899-4827-402e-88df-da2324a82119","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"d1d3f228-86f4-477f-945e-c15886fba378","keyword":"靶溅射","originalKeyword":"单靶溅射"},{"id":"6997740c-9952-4867-aeab-def979dbb2fe","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"cldb201603025","title":"CIGS电池、靶材及靶溅射工艺研究进展","volume":"30","year":"2016"},{"abstractinfo":"本文采用柠檬酸燃烧法制备了柠檬酸与金属离子摩尔比(MRCM)为1.5的NiO/Ce0.8Sm0.2O1.9(NiO/SDC)粉体,对其相组成和形貌等进行了表征。以NiO/SDC为阳极原料,共压法制备了SOFC电池,对其电化学性能性能进行测试。结果表明,用柠檬酸燃烧法成功制备出NiO/Ce0.8Sm0.2O1.9(NiO/SDC)粉体,NiO/SDC粉体中NiO与SDC晶体的粒度分别为10.39nm和7.01nm,粉体的分散性好,比表面积大。所制备的电池在800℃测试温度下开路电压为0.721V,最大输出功率密度可达224.2mW/cm2。本试验的初步实验结果表明,以柠檬酸燃烧法制备的NiO/Ce0.8Sm0.2O1.9(NiO/SDC)粉体为原料制备的阳极材料所构建的SOFC电池表现出较好的电池性能,为阳极材料的研究开拓了新的发展方向。.","authors":[{"authorName":"方海燕","id":"ce9140f9-65cc-42cb-8f73-635431eeeeba","originalAuthorName":"方海燕"},{"authorName":"程继贵","id":"39e65cc2-209a-495f-938c-e12cee42ec7d","originalAuthorName":"程继贵"},{"authorName":"杨俊芳","id":"0328cb05-9828-4e12-8929-6d9bab64ba69","originalAuthorName":"杨俊芳"},{"authorName":"李明玲","id":"18675a5c-4d7d-49ab-b20f-904f080c492f","originalAuthorName":"李明玲"}],"doi":"","fpage":"924","id":"dc763311-ad7e-4cee-a24b-4fa1f5bf04fb","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f865f55f-0069-4ae9-9765-43de9ea057f4","keyword":"中温固体氧化物燃料电池","originalKeyword":"中温固体氧化物燃料电池"},{"id":"2c74d813-eefe-4976-8efa-44c5aeb87470","keyword":"NiO","originalKeyword":"NiO"},{"id":"e2847781-9b02-49e5-8896-8a9df0b1345f","keyword":"Ce0","originalKeyword":"Ce0"},{"id":"1568b3d6-2ace-4c37-8a86-422cc31e2ac4","keyword":"8Sm0","originalKeyword":"8Sm0"},{"id":"142fca92-6cb0-4f1d-b6a6-f1c765363316","keyword":"2O2","originalKeyword":"2O2"},{"id":"a8ba9c39-c5ff-4e54-834d-88f8521dd391","keyword":"9","originalKeyword":"9"},{"id":"f97cf662-57a5-44ee-afe8-c0c7afb0bac4","keyword":"阳极材料","originalKeyword":"阳极材料"},{"id":"f3395998-7ce4-411c-83cc-6e75c5e390f3","keyword":"柠檬酸燃烧法","originalKeyword":"柠檬酸燃烧法"},{"id":"ddfd15f2-0a7e-4d3e-b313-1b3865c5bdda","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"clkxygc201206024","title":"NiO/Ce0.8Sm0.2O1.9阳极材料制备及电池性能","volume":"30","year":"2012"},{"abstractinfo":"首先综述了硅基结太阳能电池的分类、制备方法及进展,介绍了化学气相沉积法、液相外延法(LPPE)、金属诱导结晶法(MIC)、磁控溅射法以及分子束外延法等各种硅基太阳能电池的制备方法,阐述了各种制备工艺的优缺点.其次,总结了单晶硅、多晶硅以及非晶硅太阳能电池在组织结构、缺陷方面的研究现状.最后,对硅基太阳能电池的机械、电学、光学以及光电性能等方面的研究进展做了论述.","authors":[{"authorName":"季鑫","id":"95edc2b7-a8ed-40a2-a809-d242ad3fb88f","originalAuthorName":"季鑫"},{"authorName":"杨德仁","id":"cf85eb44-7817-430d-b5e0-f9aaea7662c3","originalAuthorName":"杨德仁"},{"authorName":"答建成","id":"76df2014-6575-4e5a-827e-79db9b4e9c35","originalAuthorName":"答建成"}],"doi":"10.11896/j.issn.1005-023X.2016.03.003","fpage":"15","id":"ec56be34-e455-43df-9199-cd694f17dad6","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4c668a91-049e-4f08-a8ce-2dbf9e8d5dfc","keyword":"硅基结太阳能电池","originalKeyword":"硅基单结太阳能电池"},{"id":"7040a94f-2fec-4e33-be7c-493436572d9a","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"c4000e5c-357b-4885-abe9-74cf5182af26","keyword":"单晶硅","originalKeyword":"单晶硅"},{"id":"d0482b60-7f37-477a-8266-e5a60cb904e8","keyword":"多晶硅","originalKeyword":"多晶硅"},{"id":"0debcf03-c427-4441-af42-dd6743d1ef97","keyword":"非晶硅","originalKeyword":"非晶硅"},{"id":"f8d3637b-b675-4548-8011-c06771acca29","keyword":"缺陷","originalKeyword":"缺陷"},{"id":"35d08ce3-e5ef-4414-9a16-3478022dcdb5","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"cldb201603003","title":"硅基结太阳能电池的制备技术、缺陷及其性能的研究","volume":"30","year":"2016"},{"abstractinfo":"采用无溶剂法合成了马来酸聚乙二醇甲醚酯,并对其合成工艺进行了探讨。实验以原料醇酸摩尔比、催化剂用量、阻聚剂用量、反应温度和反应时间为五因素,设计成五因素四水平的正交实验,由实验确定出组分质量分数和最佳酯化反应条件:醇酸摩尔比1.0∶1、催化剂质量分数5%、阻聚剂质量分数3%、反应温度120℃、反应时间5h,酯化率达到95.25%。进一步由大单体与丙烯酸、丙烯酸丁酯、烯丙基苯磺酸钠共聚制备出锂离子电池浆料分散剂,在分散剂质量分数为1.0%,LiFePO4质量分数为75%时,浆料粘度为2120mPa·s,静置90min后,粘度为2560mPa·s。","authors":[{"authorName":"任云","id":"21df0127-70a4-4407-9ce5-4759b066ba3b","originalAuthorName":"任云"},{"authorName":"王博","id":"2457919d-6f8a-4288-9c93-ca5e11d15795","originalAuthorName":"王博"},{"authorName":"张大海","id":"b8548f2b-592a-40b7-925d-300d31f24c30","originalAuthorName":"张大海"}],"doi":"","fpage":"1","id":"9be8a38b-3c33-4c7d-853d-afcafc6bcd71","issue":"4","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"4acad565-3bac-462b-840e-3deef931a609","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"d11b2413-d030-4054-b95e-345e7af99191","keyword":"浆料","originalKeyword":"浆料"},{"id":"48aa3bdc-b31c-40ef-8034-28149bc09430","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"5df9630d-c1ad-4807-a1e8-54a9d088efda","keyword":"单体","originalKeyword":"单体"},{"id":"41864623-dad5-4f77-be12-1ba4fc8c4581","keyword":"马来酸聚乙二醇甲醚酯","originalKeyword":"马来酸单聚乙二醇单甲醚酯"}],"language":"zh","publisherId":"hccllhyyy201404001","title":"锂离子电池浆料分散剂大单体马来酸聚乙二醇甲醚酯的合成及应用*","volume":"","year":"2014"},{"abstractinfo":"利用VHF-PECVD分解硅烷和氢气的混合气体来制备本征微晶硅薄膜.运用拉曼散射和X射线衍射研究了不同硅烷浓度对薄膜的影响.随着硅烷浓度的增加,沉积速率和光敏性增加而晶化率下降.将优化的本征材料应用到pin电池中,得到本征层厚度约为1μm的微晶电池,效率达5.87%.","authors":[{"authorName":"吴志猛","id":"ee55cd4f-3360-48cf-a8aa-d63786c27aa3","originalAuthorName":"吴志猛"},{"authorName":"雷青松","id":"c4619fc4-d56c-40d2-9f16-47699893cf60","originalAuthorName":"雷青松"},{"authorName":"赵颖","id":"ea3a644b-eca0-417a-ada1-51e85b12c38c","originalAuthorName":"赵颖"},{"authorName":"耿新华","id":"609516f5-2626-467d-a291-9a32bd030949","originalAuthorName":"耿新华"},{"authorName":"奚建平","id":"35549e9d-8200-4846-a81b-3c3428671cd6","originalAuthorName":"奚建平"}],"doi":"10.3969/j.issn.1000-985X.2005.06.029","fpage":"1122","id":"0babd7de-66d4-4633-856e-1744e3f8c507","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"edb9f7b0-f098-492f-ab85-a47dfbb14ebd","keyword":"微晶硅","originalKeyword":"微晶硅"},{"id":"883b1f6f-1a81-4824-8ca5-8e2ea537702e","keyword":"硅烷浓度","originalKeyword":"硅烷浓度"},{"id":"2e64c035-37b5-49fd-a31a-baa799814262","keyword":"太阳电池","originalKeyword":"太阳电池"}],"language":"zh","publisherId":"rgjtxb98200506029","title":"VHF-PECVD法制备氢化硅薄膜及电池","volume":"34","year":"2005"}],"totalpage":1020,"totalrecord":10192}