{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"根据D-D反应中子的能谱和角分布数据,建立了中子源模型;根据石灰岩地层标准刻度井群数据,建立了井模型。采用MCNP程序模拟了井中中子和γ射线的输运,得到了不同地层密度和不同源距处NaI探测器中的混合γ射线能谱和非弹γ射线能谱。在混合γ射线能谱2.5~5.0 MeV能区开窗,研究了开窗区混合γ射线相对计数随距的变化关系,确定距应选择在30~80 cm范围,给出了密度与混合γ射线计数之间的非线性关系。研究表明,可以利用D-D中子源的混合γ射线能谱来实现n-γ密度测井。","authors":[{"authorName":"何雄英","id":"9d1ab6be-39f2-41f8-b172-24102b50db98","originalAuthorName":"何雄英"},{"authorName":"徐大鹏","id":"a36584e6-7e09-4548-8b99-df99e3d84ca1","originalAuthorName":"徐大鹏"},{"authorName":"谢芹","id":"c5ddef71-eea6-4d5d-b86c-11d73a322ef8","originalAuthorName":"谢芹"},{"authorName":"卢小龙","id":"62a12e8c-978c-4c61-8201-b09d4d797d38","originalAuthorName":"卢小龙"},{"authorName":"郑世平","id":"d0b2f6e8-95e3-4454-87c4-588ccb6aeaa6","originalAuthorName":"郑世平"},{"authorName":"姚泽恩","id":"fc38b9a7-a057-451b-934a-aa92704e0da3","originalAuthorName":"姚泽恩"},{"authorName":"兰长林","id":"e40ad07a-6d93-4ebc-b98c-b44a687c1742","originalAuthorName":"兰长林"}],"doi":"10.11804/NuclPhysRev.30.02.151","fpage":"151","id":"8324829a-0af9-4f53-b73c-be57e67ad6e1","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"e2147be4-fba3-4709-9f9d-24594634955b","keyword":"密度测井","originalKeyword":"密度测井"},{"id":"95e3ecde-d987-4413-a09c-67fd98e8052b","keyword":"D-D中子源","originalKeyword":"D-D中子源"},{"id":"991623ce-fb9b-4b96-877e-12514adfc939","keyword":"蒙特卡罗模拟","originalKeyword":"蒙特卡罗模拟"},{"id":"7e671eb0-011e-4d11-8cb9-cb500713e7f1","keyword":"石灰岩","originalKeyword":"石灰岩"}],"language":"zh","publisherId":"yzhwlpl201302009","title":"D-D中子发生器n-γ密度测井的蒙特卡罗模拟研究","volume":"","year":"2013"},{"abstractinfo":"15 MeV电子直线加速器驱动的光中子源装置,将用于中国科学院战略性先导科技专项“钍基熔盐堆”中的核数据初步测量工作、中子探测器的研制和反应堆相关材料的辐照研究等。光中子源中子能谱是连续的,中子能量通过中子飞行时间法测量得到,需要利用吸收片确认中子吸收峰,刻度飞行时间,计算等效飞行距离,扣除实验本底等,而实验本底的扣除对最终总截面计算有很大的影响。因此通过Geant4蒙特卡罗模拟软件构建了包括中子源、吸收片在内的模拟实验环境;研究了不同吸收片的吸收谱和吸收片厚度的关系,同理论计算值进行了比较,给出了推荐的吸收片厚度值;模拟计算了中子飞行时间谱,并和实验测量结果比较,确定中子等效飞行距离为5.70 m。Geant4的理论计算也可以模拟出多吸收片本底函数曲线,可用于实验数据的本底扣除和误差分析。实验测量、模拟分析以及理论公式计算的吸收片厚度和中子飞行时间参数得到了完全一致的结果,验证了实验测量的可靠性。","authors":[{"authorName":"朱亮","id":"bafd764b-6e12-40f5-8f5f-b1733bb8c39c","originalAuthorName":"朱亮"},{"authorName":"刘龙祥","id":"bbe0fcf4-7f0a-4f50-8ba9-679399f590b7","originalAuthorName":"刘龙祥"},{"authorName":"王宏伟","id":"db7539c5-210c-4bef-891c-f8e98a3b9cb7","originalAuthorName":"王宏伟"},{"authorName":"马余刚","id":"3f12545e-2e74-40cf-b4b0-a616ce942f90","originalAuthorName":"马余刚"},{"authorName":"李琛","id":"faf1d1f6-0ac8-4a64-87e2-13376c8dcf32","originalAuthorName":"李琛"},{"authorName":"张国强","id":"72305ad8-a571-4e10-9b3a-71419884ccc8","originalAuthorName":"张国强"},{"authorName":"张松","id":"9ec007eb-47d4-4d73-8ee1-8a2bbcda229c","originalAuthorName":"张松"},{"authorName":"钟晨","id":"daa394f5-6e17-4487-b5ee-098ef55aa522","originalAuthorName":"钟晨"},{"authorName":"曹喜光","id":"5dc8944c-e227-40be-bd03-3c88a63b1367","originalAuthorName":"曹喜光"},{"authorName":"张桂林","id":"1abcb74e-8c55-475e-b8b4-32aacfb8e5e6","originalAuthorName":"张桂林"},{"authorName":"陈金根","id":"c4a272fa-7079-49ec-9f0a-8c18c8072754","originalAuthorName":"陈金根"},{"authorName":"蔡翔舟","id":"0ab6f57b-02cb-4b4b-bd22-f9530b662b5d","originalAuthorName":"蔡翔舟"},{"authorName":"韩建龙","id":"825449ca-dd01-4e10-9aae-f79792141ed5","originalAuthorName":"韩建龙"},{"authorName":"胡继峰","id":"ead763c1-a942-499b-b32f-7eef91ffbfef","originalAuthorName":"胡继峰"},{"authorName":"王小鹤","id":"d8193f84-b2b5-4bdb-ac0b-071d1472401a","originalAuthorName":"王小鹤"}],"doi":"10.11804/NuclPhysRev.33.03.308","fpage":"308","id":"9117816c-77af-44e5-83c4-881dfd41d4f4","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"e02a5344-2c21-4c60-880c-69e81842abfd","keyword":"中子吸收片","originalKeyword":"中子吸收片"},{"id":"ad5184dc-3f29-4070-99cd-4c58e909fcdd","keyword":"Geant4","originalKeyword":"Geant4"},{"id":"97636b35-f5f9-4a82-a2ad-00239351d4e5","keyword":"模拟计算","originalKeyword":"模拟计算"},{"id":"1d6a55d9-289f-437e-9cf8-ba8cdef4a52f","keyword":"蒙特卡罗","originalKeyword":"蒙特卡罗"}],"language":"zh","publisherId":"yzhwlpl201603011","title":"光中子源上吸收片功能研究","volume":"33","year":"2016"},{"abstractinfo":"与传统的地雷探测技术相比,热中子分析(Thermal Neutron Analysis,简称TNA)探雷技术具有准确率高、虚警率低和对环境适应性强的特点,但探测速度较慢,制约了其广泛应用。为了提高地雷位置处的慢热中子通量,缩短探测时间,提出了一种基于252Cf的中子源慢化装置设计构型,主要包含中子慢化层、中子反射层、本底γ屏蔽层和侧向中子吸收层4个部分。采用数值模拟的方法比较了4种常用中子慢化(反射)材料的性能,优选高密度聚乙烯作为慢化材料,石墨作为反射材料。同时,为了满足辐射安全要求,对屏蔽材料的结构进行了优化计算。按照设计构型搭建了TNA探雷实验平台。在104 n/s中子源强下优化了慢化层和反射层的厚度,测试了装置慢化效能,在107 n/s中子源强下评估了装置辐射安全性能。结果表明,采用该装置可使地雷位置处的慢热中子通量提升11倍以上,并能有效保障辐射安全。","authors":[{"authorName":"曾军","id":"96dad77a-ddb4-4746-a05e-78977e91e985","originalAuthorName":"曾军"},{"authorName":"储诚胜","id":"8eb7b3b3-fc95-4b82-91e4-2eabbceaa639","originalAuthorName":"储诚胜"},{"authorName":"郝樊华","id":"61df4300-331d-430b-8b5d-7d7673ebf920","originalAuthorName":"郝樊华"},{"authorName":"丁阁","id":"b1477e9c-88a6-47f9-a5ea-538ed07f2aa4","originalAuthorName":"丁阁"},{"authorName":"向清沛","id":"850a74ff-4479-49ba-aa4e-bf13c9b221f6","originalAuthorName":"向清沛"},{"authorName":"罗小兵","id":"7c88c178-c160-4d85-a236-348aad3c9a56","originalAuthorName":"罗小兵"}],"doi":"10.11804/NuclPhysRev.30.04.435","fpage":"435","id":"5d9cf4f9-fb1d-4391-9ebe-60b350e56a0a","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"0d561ca2-790e-4d94-bfe2-42495d1e0c6a","keyword":"TNA探雷","originalKeyword":"TNA探雷"},{"id":"75e3a55c-2794-48e9-81fa-855a50c4f913","keyword":"252Cf中子源","originalKeyword":"252Cf中子源"},{"id":"71b7340c-9406-4c20-aafe-756c14c9b726","keyword":"中子慢化","originalKeyword":"中子慢化"}],"language":"zh","publisherId":"yzhwlpl201304010","title":"热中子分析探雷的中子源慢化装置设计与优化","volume":"","year":"2013"},{"abstractinfo":"用有(主动)方法研究了贫化铀组合系统的中子诱发裂变缓发中子探测技术. 在不同屏蔽和组合等条件下测量和比较了贫化铀系统的缓发裂变中子分布, 进一步研究了实验系统的可核查性. 探讨了区分核与非核系统的方法.","authors":[{"authorName":"刘荣","id":"c11c8ace-5954-43bb-8227-d41499574061","originalAuthorName":"刘荣"},{"authorName":"林理彬","id":"5da16d67-31b5-4073-ac30-7a702ede4448","originalAuthorName":"林理彬"},{"authorName":"陈渊","id":"ac21a74d-9c3f-4c5a-9a0c-1c68ea3ec4b8","originalAuthorName":"陈渊"},{"authorName":"沈寄安","id":"28db12fe-5030-45d8-a5b4-cdee4bfdfc5f","originalAuthorName":"沈寄安"},{"authorName":"郭海萍","id":"0ea50610-3f5a-4b1b-8309-7e72d0e7b616","originalAuthorName":"郭海萍"},{"authorName":"刘渊","id":"19977d83-b7df-4752-b4f6-8f2e6d42d099","originalAuthorName":"刘渊"},{"authorName":"励义俊","id":"5373c00d-f13e-40a7-8978-cc72ef39b944","originalAuthorName":"励义俊"},{"authorName":"蒋励","id":"5cc414e9-039c-4480-9dbf-6e54e65e8655","originalAuthorName":"蒋励"},{"authorName":"王玫","id":"6692ebde-812d-4355-a360-595a50c6cb61","originalAuthorName":"王玫"}],"doi":"10.3969/j.issn.1007-4627.2000.02.010","fpage":"110","id":"7adb5429-8956-46d9-9ae8-40d54e502664","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"115c5b19-efa4-4e09-b490-2816df02998d","keyword":"贫化铀","originalKeyword":"贫化铀"},{"id":"c9bafdb5-08f3-4abb-ab87-e7458b94aaa6","keyword":"屏蔽和组合材料","originalKeyword":"屏蔽和组合材料"},{"id":"bd80336d-5c55-4cf6-aae5-b6e209eef6f2","keyword":"缓发裂变中子","originalKeyword":"缓发裂变中子"}],"language":"zh","publisherId":"yzhwlpl200002010","title":"中子源法核查技术研究","volume":"17","year":"2000"},{"abstractinfo":"散裂中子源靶体系统的有效散热设计是其能否长期稳定运行的关键之一.本文对靶体系统的钨靶和冷却水流道进行了结构设计,并建立物理模型,对其散热特性以及冷却水的流动规律进行了计算分析,结果表明:在本文设计的冷却系统作用下,钨靶的最高温度为200℃,冷却水最高温度为132.1℃,冷却水进出口压差为16.2 kPa,并且冷却水流量分配均匀,能够有效地冷却靶体,使靶体稳定运行.","authors":[{"authorName":"郝俊红","id":"6bb3dfbb-32c7-400e-8f3a-6e338493a4d2","originalAuthorName":"郝俊红"},{"authorName":"陈群","id":"9d3bb0a9-9f6d-495f-bc34-0d6dcd4187ef","originalAuthorName":"陈群"},{"authorName":"陆友莲","id":"5df6fd55-0462-4e03-b1d5-92bf88faac8a","originalAuthorName":"陆友莲"},{"authorName":"纪全","id":"5a88e6e3-ea15-45be-b924-a45d460c2661","originalAuthorName":"纪全"}],"doi":"","fpage":"1515","id":"3de07deb-d2db-4855-a7a2-37090b932dc4","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b0de0c35-2c5b-48d7-b2d8-952d7c3a704b","keyword":"散裂中子源","originalKeyword":"散裂中子源"},{"id":"57ec8205-c835-43e6-86b8-b31b8c97d4fc","keyword":"钨靶","originalKeyword":"钨靶"},{"id":"f9a46d10-9e05-4199-8a4e-749fb2e4a8bd","keyword":"冷却水系统","originalKeyword":"冷却水系统"},{"id":"4027934b-b8d1-4323-af71-e06abd4b4249","keyword":"散热设计","originalKeyword":"散热设计"}],"language":"zh","publisherId":"gcrwlxb201308028","title":"散裂中子源靶体系统的散热设计","volume":"34","year":"2013"},{"abstractinfo":"测量Al,Si,Ti,Cr,Nb等纯元素以及Ti50Al50,Ti50l48Cr2,Ti50Al48Nb2合金的符合正电子湮没辐射多普勒展宽谱和寿命谱,获得金属及合金中d电子和缺陷的信息.结果表明,二元TiAl合金的电子密度和3d电子的信号较低,晶界缺陷的开空间较大.在TiAl合金中加入Cr或Nb,合金中的d-d电子作用增强,基体和晶界处的电子密度均增加.Ti50Al48Cr2合金的多普勒展宽谱的d电子信号高于Ti50Al48Nb2合金.讨论了Cr和Nb对TiAl合金中缺陷和d-d电子相互作用的影响.","authors":[{"authorName":"祝莹莹","id":"37a6b493-fc80-4747-813c-e931b844a895","originalAuthorName":"祝莹莹"},{"authorName":"邓文","id":"3848bfb5-7cc0-4b65-be68-42fafb53d554","originalAuthorName":"邓文"},{"authorName":"孙顺平","id":"e7db80f7-5eb5-4c12-a507-71b8b0eb63e8","originalAuthorName":"孙顺平"},{"authorName":"江海峰","id":"07301541-df4a-42c8-93a3-f745e6a4fb30","originalAuthorName":"江海峰"},{"authorName":"黄宇阳","id":"1049a25a-7dbb-4aa5-bf93-bc7989265217","originalAuthorName":"黄宇阳"},{"authorName":"曹名洲","id":"61781fa7-d48a-43a3-b6a6-07e83bbf64ec","originalAuthorName":"曹名洲"},{"authorName":"熊良钺","id":"3f107b16-3a06-409e-ab81-bbc35733e540","originalAuthorName":"熊良钺"}],"doi":"","fpage":"271","id":"4e69c6bd-256b-4c38-99bb-de4a8d5d42c4","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"86a6aa46-2d09-462b-9d79-26a730a044b5","keyword":"TiAl合金","originalKeyword":"TiAl合金"},{"id":"c8e83034-9eda-42c5-b5f7-1fa5abd1a743","keyword":"d-d电子相互作用","originalKeyword":"d-d电子相互作用"},{"id":"aa252b2e-e1f7-41ad-bcaa-4f2d24611a03","keyword":"缺陷","originalKeyword":"缺陷"},{"id":"54c40f3d-8fc5-48c9-9117-e85f623767a3","keyword":"正电子湮没技术","originalKeyword":"正电子湮没技术"}],"language":"zh","publisherId":"xyjsclygc200902019","title":"用正电子湮没技术研究Cr和Nb对TiAl合金中缺陷和d-d电子相互作用的影响","volume":"38","year":"2009"},{"abstractinfo":"Two theoretical methods, the perturbation theory method (PTM) and the complete diagonalization (of energy matrix) method (CDM), are applied to calculate the spin-Hamiltonian parameters (g-factors g(parallel to), g(perpendicular to) and hyperfine structure constants A(parallel to), A(perpendicular to), obtained from electron paramagnetic resonance (EPR) spectra) and d-d transitions (obtained from optical spectra) for two tetragonal Cu(2+) centers in Ba(2)ZnF(6):Cu(2+) crystals. The Cu(2+)(I) ion replaces the Zn(2+) ion at tetragonally compressed octahedral coordination and has the ground state (2)A(1)(vertical bar d(z2) >),whereas the Cu(2+)(II) ion is at an interstitial site with a square-planar F-coordination and has the ground state (2)B(2)(vertical bar d(x2-y2>)). The calculated spin-Hamiltonian parameters and d-d transitions from the PTM and CDM coincide and are in reasonable agreement with the experimental values. This suggests that both methods are effective for the theoretical studies of EPR and optical spectral data for 3d(9) ions in tetragonal symmetry with different ground states. The defect structures of the two Cu(2+) centers in Ba(2)ZnF(6):Cu(2+) are also estimated. (c) 2009 Elsevier B.V. All rights reserved.","authors":[],"categoryName":"|","doi":"","fpage":"1371","id":"7f535968-95e9-4f19-aa06-86b8caf6dfe3","issue":"11","journal":{"abbrevTitle":"JOL","id":"12ede37a-539d-4a12-8bdc-9937c3ef9176","issnPpub":"0022-2313","publisherId":"JOL","title":"Journal of Luminescence"},"keywords":[{"id":"d5872ee7-b763-4de4-b5f2-c48d4e68e206","keyword":"Electron paramagnetic resonance (EPR);d-d transition;Crystal-field;theory;Defect structure;Cu(2+);Ba(2)ZnF(6);paramagnetic-res spectrum;hyperfine parameters;optical-spectrum;3d(n);ions;epr;field;distortions;resonance;ligand","originalKeyword":"Electron paramagnetic resonance (EPR);d-d transition;Crystal-field;theory;Defect structure;Cu(2+);Ba(2)ZnF(6);paramagnetic-res spectrum;hyperfine parameters;optical-spectrum;3d(n);ions;epr;field;distortions;resonance;ligand"}],"language":"en","publisherId":"0022-2313_2009_11_1","title":"Studies of the spin-Hamiltonian parameters, d-d transitions and defect structures for two tetragonal Cu(2+) centers in Ba(2)ZnF(6):Cu(2+) crystal","volume":"129","year":"2009"},{"abstractinfo":"利用中国原子能科学研究院HI-13串列加速器上的多探测器快中子飞行时间谱仪,测量了38个不同入射质子能量点下15N(p,n)15O反应0°角方向的激发函数.测量数据用蒙特卡罗方法进行了模拟,以进行中子注量衰减和入射窗厚度的不确定度修正.实验在入射质子能量位于6.029-8.056 MeV之间时发现了3个共振峰,这一点与DROSG-2000评价数据及PTB数据相符合,但三家的截面数值存在差异,对这些差异需要作进一步深入探讨.","authors":[{"authorName":"齐波","id":"28a82783-2a99-41e8-bcae-e6751fea0ae5","originalAuthorName":"齐波"},{"authorName":"阮锡超","id":"46daaf6b-9d4a-4920-b0f0-d4039308645f","originalAuthorName":"阮锡超"},{"authorName":"姚泽恩","id":"bff6ff1b-a5ae-4835-9b08-6b1e1b39e021","originalAuthorName":"姚泽恩"},{"authorName":"R.Nolte","id":"e104e3ca-5d8a-4e05-8747-69043c1962d1","originalAuthorName":"R.Nolte"},{"authorName":"陈国长","id":"c7563702-10e5-4065-8d9b-5b80aab0f212","originalAuthorName":"陈国长"},{"authorName":"黄翰雄","id":"78511e14-7f99-4c9d-9fae-18ac157587f3","originalAuthorName":"黄翰雄"},{"authorName":"李永明","id":"cc8c44e3-f2e4-4f67-a851-716f1d3c8a6c","originalAuthorName":"李永明"},{"authorName":"周斌","id":"525a30c1-2611-4643-a6b4-83286fe36721","originalAuthorName":"周斌"},{"authorName":"马中原","id":"b6f64d94-5528-4302-b9f1-baa7242150ab","originalAuthorName":"马中原"},{"authorName":"张雅玲","id":"83301570-b5cf-4cbf-8ab4-8d9badbc3641","originalAuthorName":"张雅玲"},{"authorName":"仲启平","id":"c2d79877-fe75-46e0-83b4-711f8d8910bc","originalAuthorName":"仲启平"},{"authorName":"聂阳波","id":"e78d1805-4d95-4409-9923-fb0f6ceb159e","originalAuthorName":"聂阳波"},{"authorName":"陈效先","id":"dbe66ff0-6e10-4be6-be4d-c236442617b6","originalAuthorName":"陈效先"},{"authorName":"周祖英","id":"4073ec7c-0a6a-4d19-95f5-ccc294d29211","originalAuthorName":"周祖英"}],"doi":"","fpage":"251","id":"16245929-452c-44af-87e3-e8a96412c4d3","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"5e3e1096-4359-4194-a23b-1d3dd825364d","keyword":"激发函数","originalKeyword":"激发函数"},{"id":"0a2221e8-2fe0-47af-bc82-b9402e9c7a9d","keyword":"蒙特卡罗方法","originalKeyword":"蒙特卡罗方法"},{"id":"5cd304ee-1e72-4766-8586-5410e79bbbc5","keyword":"评价数据","originalKeyword":"评价数据"},{"id":"63a14f3e-9550-46af-b2d0-0ddd399c278a","keyword":"微分截面","originalKeyword":"微分截面"}],"language":"zh","publisherId":"yzhwlpl201102021","title":"15N(p,n)15O反应中子源0°角激发函数测量","volume":"28","year":"2011"},{"abstractinfo":"为了提高PGNAA系统中D-T中子管的中子慢化效率,获得更高的热中子产额,借助蒙特卡罗模拟,确定了以铅为中子反射层、5个聚乙烯层和铅层相互交替作为中子慢化层、碳化硼含量为5%的含硼聚乙烯作为中子吸收层以及铅作为γ屏蔽层的中子慢化装置模型。针对中子产额为3×107 n/s的D-T中子管,该慢化装置出射方向低于5 eV的中子产额可达5.28×106 n/s,占总中子产额的30.8%,有效提高了中子慢化效率。经过验证模拟结果能够满足实验要求。","authors":[{"authorName":"黄红","id":"45e2dbcb-778d-4a9d-bd77-fb5f5e5c0bc4","originalAuthorName":"黄红"},{"authorName":"李锐","id":"6097ab89-2455-4ec6-81a4-e0d0a2ece9be","originalAuthorName":"李锐"},{"authorName":"王琦标","id":"3e3cd5cf-2584-4590-b0cc-219dd577b34e","originalAuthorName":"王琦标"},{"authorName":"庹先国","id":"f02ec5f2-552f-4534-bb89-8b2f5112389b","originalAuthorName":"庹先国"},{"authorName":"杨剑波","id":"a7307dc5-d572-4dac-a549-b1f4cb951f3e","originalAuthorName":"杨剑波"},{"authorName":"王旭","id":"c34ee6f2-f888-4577-8c45-cc612f81445b","originalAuthorName":"王旭"}],"doi":"10.11804/NuclPhysRev.33.01.077","fpage":"77","id":"8ae12e6a-82b8-4588-bcf3-47a9af28f75c","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"da69cf91-cc51-49a3-9922-825e4a1f5d16","keyword":"PGNAA","originalKeyword":"PGNAA"},{"id":"080cb4d2-c850-430a-91dc-42e83bf8a146","keyword":"D-T中子管","originalKeyword":"D-T中子管"},{"id":"be2a312e-834f-4ece-bc1b-fae4456bfaf1","keyword":"中子慢化","originalKeyword":"中子慢化"},{"id":"e2a8b258-5cad-4951-8282-19e6e707da94","keyword":"蒙特卡罗","originalKeyword":"蒙特卡罗"}],"language":"zh","publisherId":"yzhwlpl201601015","title":"PGNAA系统中D-T中子管的慢化装置优化设计","volume":"33","year":"2016"},{"abstractinfo":"靶单元组件对中子有散射和吸收作用,与入射粒子也会发生反应,因此高压倍加器中子场在空间的分布除了由反应本身的角分布决定外,还受到靶单元组件的影响。实验利用飞行时间法测量了高压倍加器T(d, n)4 He中子源产生的实际中子场,测量角度为0°~95°,共8个角度,采用伴随α粒子法对入射束流进行归一。借助蒙特卡罗方法模拟实验过程和靶单元组件等对中子场分布的影响,将实验结果同模拟计算得到的结果进行了比较与分析,为高压倍加器相关实验布局的合理布置和靶单元组件的优化提供了一定的依据。","authors":[{"authorName":"王黎明","id":"1ca5018c-32e5-4dce-bf52-ee98a1b5d16c","originalAuthorName":"王黎明"},{"authorName":"蒋婧","id":"1bc3ddcf-f2dc-4f02-a2bc-63d665eb85d3","originalAuthorName":"蒋婧"},{"authorName":"鲍杰","id":"292d707c-60d0-441e-95df-426110820a35","originalAuthorName":"鲍杰"},{"authorName":"聂阳波","id":"ebb6f4d3-9b78-4290-9cfd-5aa7d102cf7a","originalAuthorName":"聂阳波"},{"authorName":"黄翰雄","id":"f2e6a305-30e9-46ca-b3d0-36e662d67339","originalAuthorName":"黄翰雄"},{"authorName":"李霞","id":"a91d5b2d-e7a5-4041-86d4-71a5e1c8016c","originalAuthorName":"李霞"},{"authorName":"陈红涛","id":"ae9ff08b-6978-4b83-9e4f-88d450f115fe","originalAuthorName":"陈红涛"}],"doi":"10.11804/NuclPhysRev.33.01.067","fpage":"67","id":"e83fe6c1-5bde-4389-9c59-75ceba65cb67","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"d15e437a-3dc7-4133-9611-2fcfbc3d9c0c","keyword":"实际中子场","originalKeyword":"实际中子场"},{"id":"c56b7452-ebac-4186-9324-0bc8e43d9972","keyword":"飞行时间法","originalKeyword":"飞行时间法"},{"id":"4f728f5a-3faf-40b4-b63e-56dd5f540c3f","keyword":"伴随粒子法","originalKeyword":"伴随粒子法"},{"id":"dab4749a-d957-455f-b591-8fd0d0a18f8d","keyword":"蒙特卡罗模拟","originalKeyword":"蒙特卡罗模拟"}],"language":"zh","publisherId":"yzhwlpl201601013","title":"高压倍加器靶单元组件对中子能谱影响研究","volume":"33","year":"2016"}],"totalpage":1232,"totalrecord":12315}