{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用多晶硅切割废料,采用燃烧合成的方法成功制备了SiC/Si2N2OSiC/SiAlON复相粉体材料,并以该粉体为辐射基料制备出高温红外发射涂料.研究了原料配比对产物物相组成和微观形貌的影响,讨论了掺人C粉和Al粉的燃烧反应机理.实验结果表明,当反应剂中SiCSi∶C =68∶ 56∶0(质量比)时,合成产物中的Si2N2O含量最大;当反应剂中SiCSi∶C∶Al =68∶ 53∶ 24∶21时,合成产物中的SiAlON含量最高,配制成的高温红外涂料的红外发射率数值最高,在2.5 ~23.5 μm波段范围内达到了0.92.","authors":[{"authorName":"韩林森","id":"c71a85ac-ce3b-4c9e-b965-0a3f6b9dbd65","originalAuthorName":"韩林森"},{"authorName":"杨建辉","id":"8ad58d1f-84d4-4bff-8b1e-2bae40d75bf0","originalAuthorName":"杨建辉"},{"authorName":"李永","id":"c994214f-d049-4e6a-8f94-6b4a30d466a2","originalAuthorName":"李永"},{"authorName":"林志明","id":"cb91a8f1-7636-4f10-a4e9-3b8139adc9bf","originalAuthorName":"林志明"},{"authorName":"李江涛","id":"efd5e103-2c87-4ee8-9c23-73a698fd9c0a","originalAuthorName":"李江涛"}],"doi":"","fpage":"506","id":"fba48e90-1d88-4d3b-a862-8ee7fff5de46","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4e8c45cd-e196-4441-81b3-da31518a942b","keyword":"SiC基复相材料","originalKeyword":"SiC基复相材料"},{"id":"95eafe78-50d6-429c-9aad-51bbff4307bf","keyword":"SiC-Si2N2O","originalKeyword":"SiC-Si2N2O"},{"id":"5b96df3a-de14-49cf-85f8-6a741f42fcfe","keyword":"SHS","originalKeyword":"SHS"},{"id":"881d3edc-625c-4e10-9691-47ef92b22e72","keyword":"多晶硅切割废料","originalKeyword":"多晶硅切割废料"}],"language":"zh","publisherId":"gsytb201203002","title":"利用多晶硅切割废料燃烧合成SiC基复相材料","volume":"31","year":"2012"},{"abstractinfo":"为进一步提高C/C复合材料的抗高温氧化性能,采用包埋法和刷涂法在C/C复合材料上制备了SiC/MoSi2-Si2N2O-CrSi2抗高温氧化涂层,借助XRD及SEM对涂层的组织结构及形貌进行了表征,初步研究了涂层在1500℃静态空气中的氧化性能及其形成机理。结果显示:SiC/MoSi2-Si2N2O-CrSi2涂层最外层主要由Si2N2O,少量CrSi2SiC,MoSi2相组成,该涂层在1500℃下氧化26h失重率仅为1.94%,其抗氧化性能优于无Si2N2O的MoSi2-SiC-CrSi2涂层。","authors":[{"authorName":"殷玲","id":"11dcdbdb-c0f8-40fd-b4f5-4610e0b589dd","originalAuthorName":"殷玲"},{"authorName":"熊翔","id":"6d4c4b07-5708-4a16-80e1-98babf8a7d54","originalAuthorName":"熊翔"},{"authorName":"曾毅","id":"a2509c20-4550-4638-9297-f2075bb8452f","originalAuthorName":"曾毅"},{"authorName":"郭顺","id":"33ec0c15-ec07-4c4a-9639-ca0adb05d9a2","originalAuthorName":"郭顺"},{"authorName":"张武装","id":"a67f06c1-6d85-4e61-8173-b17370b43222","originalAuthorName":"张武装"}],"doi":"","fpage":"23","id":"cf04ac28-fb02-45cf-b371-cb875af963cf","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d4fe649b-b5af-4676-be8e-b1d95026fc46","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"580b76c7-2c86-4343-85b3-1369980288a1","keyword":"抗氧化涂层","originalKeyword":"抗氧化涂层"},{"id":"83c99dbb-4ef0-4b6a-99ce-43902d7bb18c","keyword":"SiC涂层","originalKeyword":"SiC涂层"},{"id":"7b672145-bb6e-499a-a982-325fb14479ae","keyword":"Si2N2O","originalKeyword":"Si2N2O"},{"id":"ac9f93b1-445f-4867-92bb-8a81214f252e","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"0ffa29e6-578b-4f9d-b0f1-a53d360ebb3d","keyword":"形貌","originalKeyword":"形貌"},{"id":"1ca74bf0-007d-4bc1-a104-97566603513b","keyword":"形成机理","originalKeyword":"形成机理"}],"language":"zh","publisherId":"clbh201112007","title":"C/C复合材料上SiC/MoSi2-Si2N2O-CrSi2涂层的制备、抗氧化性能及形成机理","volume":"44","year":"2011"},{"abstractinfo":"为了改善 MgO-SiC-C 质耐火材料的性能,以 w(SiO2)=99.70%的分析纯二氧化硅和 w(Si)=96.16%的工业单质硅为原料,于1450℃高温氮化合成了 Si2 N2 O 粉。然后以质量分数分别为80%的电熔镁砂(5~3、3~1、≤1和0.075 mm)、15%的碳化硅(≤1、0.088 mm)、5%的鳞片石墨粉为原料,外加0.5%的金属铝粉和3%的单质硅粉为抗氧化剂,外加4.5%的热固性酚醛树脂作为结合剂,外加合成 Si2 N2 O 粉(质量分数为0、1%、3%和5%)制备了 MgO-SiC-C 质耐火材料。研究 Si2 N2 O 粉外加量对该材料性能及显微结构的影响。结果表明:加入适量 Si2 N2 O 粉可以改善试样的物理性能以及抗氧化性能;而其 Si2 N2 O 氧化分解产生的 SiO2填充于气孔会阻塞渣渗透的通道,从而提高了试样的抗渣性能。本试验条件下,Si2 N2 O 粉加入量为1%(w)时,MgO-SiC-C质耐火材料的各项性能最佳。","authors":[{"authorName":"文晋","id":"01e8481a-f79f-431e-93b0-f4e3a85a64cf","originalAuthorName":"文晋"},{"authorName":"聂建华","id":"db61bf42-9641-4f31-83c0-13cf3be47941","originalAuthorName":"聂建华"},{"authorName":"邱文冬","id":"99fdc240-c274-4276-ba42-b25979be5d49","originalAuthorName":"邱文冬"},{"authorName":"梁永和","id":"29a321c2-a7b2-46f0-9bf2-cc7f5139a46b","originalAuthorName":"梁永和"},{"authorName":"赵伟","id":"4e17bb7d-361d-46bb-9d88-b56f0f06f145","originalAuthorName":"赵伟"},{"authorName":"尹国恒","id":"bde49dae-9ec7-4139-8222-4b0233cbba19","originalAuthorName":"尹国恒"},{"authorName":"尹玉成","id":"0a77f2bd-f03f-4cd2-8205-ffa5834283b0","originalAuthorName":"尹玉成"},{"authorName":"徐超","id":"d7d27241-ca2a-4713-9cd4-ba191382622e","originalAuthorName":"徐超"}],"doi":"10.3969/j.issn.1001-1935.2015.03.006","fpage":"182","id":"5135bc5c-95a2-4683-b208-06e1d9b2ffec","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"f3d4ab9a-c3a3-4a8a-aa10-40143ff853c5","keyword":"MgO-SiC-C 质耐火材料","originalKeyword":"MgO-SiC-C 质耐火材料"},{"id":"38b793fe-2ca0-4fbf-8d7e-61a168ada866","keyword":"Si2 N2 O","originalKeyword":"Si2 N2 O"},{"id":"83796bc1-dd6c-4eb9-bb76-9685857a2feb","keyword":"抗氧化性能","originalKeyword":"抗氧化性能"},{"id":"d4653e59-6eb4-4adb-974d-26e2c725f21a","keyword":"抗渣性能","originalKeyword":"抗渣性能"}],"language":"zh","publisherId":"nhcl201503007","title":"加入 Si2N2O 粉对 MgO-SiC-C 质耐火材料性能的影响","volume":"","year":"2015"},{"abstractinfo":"以纯度均>97%的磨料级黑SiC、硅粉和SiO2粉为原料,加入临时结合剂,混练15~20 min后,在油压机上压成125 mm×25 mm×25 mm的试样,再将干燥后的生坯在高纯氮气中于1 450 ℃ 10 h氮化烧成后,制成了SiO2加入量(w)分别为0、4%、6%、8%、10%的Si2N2O结合SiC试样,以研究SiO2加入量对材料相组成与显微结构的影响.结果表明:随着SiO2细粉加入量的增加,试样基质中的Si2N2O生成量逐渐增加,Si3N4量逐渐降低;试样的整体结构变得越来越致密,孔洞部位Si2N2O晶体的发育越来越趋于完全.","authors":[{"authorName":"刘春侠","id":"7c384ed0-4fe1-4363-a944-08efc1182236","originalAuthorName":"刘春侠"},{"authorName":"吕祥青","id":"9474e840-4d19-444e-ad36-7d1e67542bcd","originalAuthorName":"吕祥青"},{"authorName":"李杰","id":"12768823-0b1d-4897-a2f8-d441fedc2634","originalAuthorName":"李杰"},{"authorName":"黄志刚","id":"cab98a51-34e8-4a19-a7dd-33c868a30a5b","originalAuthorName":"黄志刚"},{"authorName":"袁昌龙","id":"e4a7cf9d-5956-4c6a-92f3-9b7b269420ab","originalAuthorName":"袁昌龙"}],"doi":"10.3969/j.issn.1001-1935.2008.01.004","fpage":"14","id":"7802761e-fd56-47ac-8513-1a36040b8674","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"ee726f2b-2753-48dd-87f7-c6d9966f7be6","keyword":"氧氮化硅结合碳化硅","originalKeyword":"氧氮化硅结合碳化硅"},{"id":"b0ec0bd4-e900-4119-85a1-c336039b70f2","keyword":"相组成","originalKeyword":"相组成"},{"id":"c031a341-76cf-4a89-85d7-f3c43f5cd3fa","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"nhcl200801004","title":"SiO2加入量对Si2N2O结合SiC试样相组成与显微结构的影响","volume":"42","year":"2008"},{"abstractinfo":"Si(2)N(2)O/BN composites were successfully fabricated. With increasing BN content, the elastic modulus and hardness almost linearly decrease while the flexural strength does not exhibit a dramatic degradation. This is attributed to the fact that the homogeneously dispersed nanosized BN particles inhibit the grain growth of Si(2)N(2)O. The critical thermal-shock resistance temperature of the Si(2)N(2)O/30 vol% BN composite is enhanced by 400 degrees C than monolithic Si(2)N(2)O. The introduction of BN significantly improves the dielectric properties and machinability. The Si(2)N(2)O/BN composites show a combination of high strength, low dielectric constant, good thermal shock resistance, and machinability, indicating that they are promising structural/functional materials.","authors":[],"categoryName":"|","doi":"","fpage":"295","id":"4ce62f85-ec2f-48fb-b57c-c36310d22fe3","issue":"3","journal":{"abbrevTitle":"IJOACT","id":"4445fecf-7ef7-4048-819e-f386e4c6e69d","issnPpub":"1546-542X","publisherId":"IJOACT","title":"International Journal of Applied Ceramic Technology"},"keywords":[{"id":"bc1d5793-b4c3-4ae4-a6f3-821eaa9e0e5e","keyword":"thermal-shock behavior;nitride/boron nitride nanocomposites;silicon;oxynitride ceramics;mechanical-properties;high-strength;microstructure;toughness;carbide;alumina;system","originalKeyword":"thermal-shock behavior;nitride/boron nitride nanocomposites;silicon;oxynitride ceramics;mechanical-properties;high-strength;microstructure;toughness;carbide;alumina;system"}],"language":"en","publisherId":"1546-542X_2008_3_1","title":"Preparation and properties of machinable Si(2)N(2)O/BN composites","volume":"5","year":"2008"},{"abstractinfo":"以40%~46%(质量分数,下同)的烧结刚玉(8~1 mm)和30%的碳化硅(0.5~0.074 mm)为主要原料,SiO2微粉(d50=2 μm)、高铝水泥、α-Al2O3微粉(d50=4 μm)等为辅助原料,Si粉(≤0.074 mm)和Si3N4粉(≤0.074 mm)为添加剂,外加定量的水和分散剂而制成Al2O3-SiC复合材料.利用回转侵蚀试验研究了分别添加3%和6%的Si粉或Si3N4粉对Al2O3-SiC复合材料抗高炉渣(碱度为1.3)侵蚀性能及表面致密层状况的影响.试验结果表明:添加Si粉有利于试样表面致密层的形成,明显改善其抗侵蚀性能,且随着Si粉添加量增加,致密层厚度增加;而添加Si3N4粉对表面致密层的形成和改善抗渣性能并没有明显贡献.","authors":[{"authorName":"占华生","id":"6840aee4-0772-464c-9dd9-5fdb0a1edef6","originalAuthorName":"占华生"},{"authorName":"陈俊红","id":"62d9fb38-b286-4c3d-b5fc-15bd3dbae2c4","originalAuthorName":"陈俊红"},{"authorName":"薛文东","id":"f9eacf11-fb85-4ed1-b6e1-72f83e07b9d2","originalAuthorName":"薛文东"},{"authorName":"孙加林","id":"b6a923f6-154e-4733-bf90-314675b27bb8","originalAuthorName":"孙加林"},{"authorName":"汪哲","id":"b035c39b-a69b-4019-87d7-25197feb2de8","originalAuthorName":"汪哲"}],"doi":"10.3969/j.issn.1001-1935.2008.06.012","fpage":"445","id":"7797c72a-b0ee-4083-9c32-d20982722f09","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"72b0665f-39aa-4a9d-a228-33489cc9ae0e","keyword":"Al2O3-SiC复合材料","originalKeyword":"Al2O3-SiC复合材料"},{"id":"bc296262-a674-4419-9e5f-27c1edd44912","keyword":"活性氧化","originalKeyword":"活性氧化"},{"id":"ef18ba7d-3e76-447d-89c5-76129c24339e","keyword":"致密层","originalKeyword":"致密层"},{"id":"ba53bc35-21a2-4c12-94af-8ad019d8a5d0","keyword":"回转侵蚀试验","originalKeyword":"回转侵蚀试验"}],"language":"zh","publisherId":"nhcl200806012","title":"添加Si粉和Si3N4粉对Al2O3-SiC材料抗侵蚀性的影响","volume":"42","year":"2008"},{"abstractinfo":"研究了添加0~8%Al2 O3对烧成Si3N4结合SiC耐火材料的显微结构、抗氧化和抗碱侵蚀能力的影响。借助XRD、SEM及光学显微镜观察发现:添加Al2 O3通过氮化反应烧结使得材料基质中的Si3N4由纤维状Si3N4向柱状Sialon相转化,显微结构更加致密。4#试样中的Al2O3加入量对提高Si3N4结合SiC耐火材料的抗氧化和抗碱侵蚀性的作用已极其明显。","authors":[{"authorName":"黄朝晖","id":"a179f025-bf87-4787-a2cb-545d44697378","originalAuthorName":"黄朝晖"},{"authorName":"孙加林","id":"a0dbfedc-65b0-4bfc-8ec3-19c76e7a61b1","originalAuthorName":"孙加林"},{"authorName":"王金相","id":"c404c863-ebe6-432c-8135-fc08da33aa1f","originalAuthorName":"王金相"},{"authorName":"洪彦若","id":"6d7b7ec8-e3f0-403b-b58c-fa3ed297cf0e","originalAuthorName":"洪彦若"}],"doi":"10.3969/j.issn.1001-1935.2000.06.001","fpage":"309","id":"1eb9ac4e-25e8-48df-b6c1-bbbbae015c58","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"ca46086a-9ec1-46fd-bb42-4d737d96f85f","keyword":"Si3N4结合SiC","originalKeyword":"Si3N4结合SiC"},{"id":"75663318-7b1a-4d4b-86c3-8126482482a8","keyword":"Al2O3添加物","originalKeyword":"Al2O3添加物"},{"id":"8c6d6186-a023-4ef0-8eee-7ccde4c01678","keyword":"抗氧化性","originalKeyword":"抗氧化性"},{"id":"d98237cd-5ddc-4685-8645-e77dc402d408","keyword":"抗碱侵蚀性","originalKeyword":"抗碱侵蚀性"},{"id":"2e0a9be8-4af0-4a58-a2b6-eff64e89ccc3","keyword":"Sialon相","originalKeyword":"Sialon相"}],"language":"zh","publisherId":"nhcl200006001","title":"Al2O3对Si3N4结合SiC材料抗氧化和抗碱侵蚀性的影响","volume":"34","year":"2000"},{"abstractinfo":"以低压铸造用升液管为研究目的,以Y2O3-Al2O3-Fe3O3为复合烧结助剂,磨切单晶硅废料Si粉和SiC为主料,反应烧结法制备Si3N4/SiC复相陶瓷。研究了Y2O3含量对复合材料结构和力学性能的影响,采用XRD、SEM对复合材料的相组成、微观形貌进行分析。结果表明,反应烧结后试样生成Si3N4结合SiC晶粒为主相的烧结体,并含有少量Sialon晶须及未反应的Si。Y2O3含量对复相陶瓷力学性能影响很大,在分析稀土Y2O3作用机理的基础上,得到2.5%Y2O3优化试样的力学性能优良,相对密度达到88%,维氏硬度达到1.1GPa,常温抗弯强度50MPa。","authors":[{"authorName":"耿桂宏","id":"65c39515-ccff-4db5-8080-90053fe1ffc2","originalAuthorName":"耿桂宏"},{"authorName":"罗绍华","id":"0f492f5e-ede3-47bb-a018-9fe5aad3c6d1","originalAuthorName":"罗绍华"},{"authorName":"毕晓露","id":"e0eac70f-a42c-429f-b8fa-05f51f73a775","originalAuthorName":"毕晓露"},{"authorName":"武聪","id":"7c380d8e-dd61-4c33-a597-2ccf863600ca","originalAuthorName":"武聪"},{"authorName":"陈宇红","id":"17deeb56-6ccf-4f81-abb4-3fbe894eecc1","originalAuthorName":"陈宇红"},{"authorName":"韩非","id":"7e6236de-3845-4c61-8a88-296f0bd952b9","originalAuthorName":"韩非"}],"doi":"","fpage":"13","id":"dc110056-ff27-4b46-868c-2ece877ec6ef","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fc3335e5-3a98-44cf-8327-dbe1948cf4d1","keyword":"Si3N4/SiC复相陶瓷","originalKeyword":"Si3N4/SiC复相陶瓷"},{"id":"0244bad2-efce-4312-8663-f3ba53a24cf1","keyword":"Y2O3","originalKeyword":"Y2O3"},{"id":"a081e017-84ed-411f-a514-9599f13ceebc","keyword":"烧结助剂","originalKeyword":"烧结助剂"},{"id":"49901b2b-4293-4786-9c92-01a4d4aa0828","keyword":"反应烧结","originalKeyword":"反应烧结"},{"id":"df949596-8527-4133-9dde-9970a16e8dc8","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201207004","title":"Y2O3对反应烧结Si3N4/SiC复相陶瓷组织和性能的影响","volume":"33","year":"2012"},{"abstractinfo":"对Si3N4-C和SiO2-C-N2系统中的主要化学反应以及SiC晶须在两种系统中合成的热力学条件进行了分析,进而采用碳黑为碳源、Si3N4与SiO2微粉为硅源、氧化硼为催化剂,分别在氩气与氮气气氛下,于1600℃合成SiC晶须.采用扫描电子显微镜,透射电子显微镜等分析手段分析了晶须的生成量和形貌结构特征.结果表明:通过SiO2-C-N2系统可以一步合成SiC晶须,其与Si3N4-C系统合成的均为β-SiC;但在晶须的生成量和质量上,Si3N4-C系统合成的SiC晶须较好.","authors":[{"authorName":"张颖","id":"377523d1-95f1-47ef-82ea-ff2392cc4f70","originalAuthorName":"张颖"},{"authorName":"张军战","id":"d4dd09f8-8090-46bf-9330-2d4b7c2556f9","originalAuthorName":"张军战"},{"authorName":"刘民生","id":"01fd4a52-13ab-4095-817c-55f7397e3f91","originalAuthorName":"刘民生"}],"doi":"","fpage":"1375","id":"da9914d0-9c70-4482-9d13-8a82b7d28a90","issue":"7","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f7785615-239c-4f67-968c-9e774a0941e7","keyword":"SiC晶须","originalKeyword":"SiC晶须"},{"id":"50a0248e-472e-405f-a2bb-85af73a6485a","keyword":"热力学","originalKeyword":"热力学"},{"id":"f2e905fd-9361-4a39-9fe2-4eeaeb6fc75a","keyword":"合成系统","originalKeyword":"合成系统"},{"id":"06b7d8b7-ffb3-46bf-8876-3a3d3ceae2dd","keyword":"形貌结构特征","originalKeyword":"形貌结构特征"}],"language":"zh","publisherId":"gsytb201307028","title":"SiC晶须在Si3N4-C和SiO2-C-N2系统中的合成","volume":"32","year":"2013"},{"abstractinfo":"以Y2O3和Al2O3陶瓷粉体作为烧结助剂,原位无压液相烧结制备Si3N4-Si2N2O复相陶瓷,Si2N2O相通过SiO2+Si3N4 2Si2N2O反应生成.生坯采用注凝成型制备,然后在1780℃保温2h烧结,烧结体基本由板条状的Si2N2O及长柱状的β-Si3N4晶粒构成.Si2N2O陶瓷相对于Si3N4陶瓷而言,具有优异的抗氧化性能,低的弹性模量,以及低的热膨胀系数,因此,Si2N2O-Si3N4复相陶瓷结合了两者的优异性能,并大大提高了材料的热冲击性,材料的热冲击温差即使达到1200℃,其残余强度基本上没有变化.","authors":[{"authorName":"裴雨辰","id":"4f517f93-4ed7-4e2b-a380-5a87741a04ff","originalAuthorName":"裴雨辰"},{"authorName":"李嘉禄","id":"cacd12fb-e498-451a-897f-1f516f703f63","originalAuthorName":"李嘉禄"},{"authorName":"于长清","id":"a64db8ce-7036-41d3-acd7-27256361b835","originalAuthorName":"于长清"},{"authorName":"李淑琴","id":"5cf7172f-e229-4163-978f-8c5b62de1b32","originalAuthorName":"李淑琴"}],"doi":"10.3969/j.issn.1001-4381.2008.05.002","fpage":"4","id":"6026152c-89c8-4c90-9386-34117f6e1ecb","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"b4415410-1bd6-494d-a555-775094c3d1d9","keyword":"原位无压","originalKeyword":"原位无压"},{"id":"61c0788e-e054-4d66-b1dd-e5cc7e455beb","keyword":"Si2N2O","originalKeyword":"Si2N2O"},{"id":"78c1931b-c255-4328-9bfa-e2367cc530d5","keyword":"Si3N4","originalKeyword":"Si3N4"},{"id":"2159a3e9-c94f-42cd-94fe-f327351ae14c","keyword":"复相陶瓷","originalKeyword":"复相陶瓷"}],"language":"zh","publisherId":"clgc200805002","title":"原位无压烧结制备Si2 N2O-Si3 N4复相陶瓷","volume":"","year":"2008"}],"totalpage":9569,"totalrecord":95685}