{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"纳米纤维素(NCC)具有多种优良性能,成为纳米技术研究的热点。综述了 NCC 的化学制备方法,主要包括酸水解法、酶解法和纤维氧化降解法;对 NCC 的改性技术进行了介绍,主要包括乙酰化改性、阳离子化改性、硅烷化改性、羧基化改性及聚合物接枝;并对其在复合材料、医药及食品等领域的应用进行了介绍;最后概述了NCC 的发展前景。","authors":[{"authorName":"刘颖","id":"5ca98914-b8ec-4619-8b4b-74c26b63e9ea","originalAuthorName":"刘颖"},{"authorName":"任学宏","id":"bdf73240-d157-4300-bc97-badab9c8f5e5","originalAuthorName":"任学宏"}],"doi":"10.11896/j.issn.1005-023X.2015.011.024","fpage":"133","id":"f4314af1-354b-44f9-82b5-a213fcca2203","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ddbee608-233c-4ccb-8e66-62626a093ca8","keyword":"纳米纤维素","originalKeyword":"纳米纤维素微晶"},{"id":"36f097b7-8d53-4a81-a9ca-0ff1f3f23174","keyword":"制备","originalKeyword":"制备"},{"id":"5fa97c7f-71dc-4072-9d63-316e639cc215","keyword":"改性","originalKeyword":"改性"}],"language":"zh","publisherId":"cldb201511024","title":"纳米纤维素的制备、改性及其应用?","volume":"","year":"2015"},{"abstractinfo":"深入研究了体系的质量分数、温度、剪切速率、pH值、盐浓度对纳米纤维素胶体黏度的影响,发现纳米纤维素胶体具有剪切稀化性,高温度、高酸碱度和无机盐存在条件下的良好增稠性,具有优异的流变学性质,可以用于食品,医药,日用化工等多种行业.","authors":[{"authorName":"郭瑞","id":"710e52d8-19ad-4564-9838-ee88d7137b6e","originalAuthorName":"郭瑞"},{"authorName":"丁恩勇","id":"82bb7c76-319e-4af9-ab58-1381d46761e0","originalAuthorName":"丁恩勇"}],"doi":"","fpage":"125","id":"d90710c7-ba1c-417d-83d5-fa283653f6a5","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0cf7fa47-f36a-45d3-876d-c31cbbacd103","keyword":"纳米纤维素胶体","originalKeyword":"纳米微晶纤维素胶体"},{"id":"698f09e9-5d8c-43ad-8f1e-4fa9eae1db0d","keyword":"流变性","originalKeyword":"流变性"},{"id":"7095e589-32c0-4caa-bf56-c3d538f83b7e","keyword":"黏度","originalKeyword":"黏度"}],"language":"zh","publisherId":"gfzclkxygc200605031","title":"纳米纤维素胶体的流变性研究","volume":"22","year":"2006"},{"abstractinfo":"研究了马来酸酐(MAH)固相接枝纤维素(MCC)的反应工艺,并通过红外光谱、X射线衍射对纤维素及其接枝产物进行了对比表征.红外结果表明,接枝产物在1719.13 cm~(-1)处出现了酯基的伸缩振动吸收峰,可定性地说明马来酸酐与纤维素发生了接枝反应.X射线衍射结果表明,接枝反应并没有改变纤维素的结晶结构,仅使其结晶度下降.文中探讨了接枝反应温度、时间和MAH用量等因素对接枝取代度的影响.当马来酸酐与纤维素质量比为8%,反应温度90℃,反应时间3 h,可得到取代度达0.1的马来酸酐接枝纤维素.","authors":[{"authorName":"刘亮","id":"84c360fc-28d9-432d-90e5-88f9630ab89f","originalAuthorName":"刘亮"},{"authorName":"杨伟","id":"3654173b-f1ce-4617-abbd-3ab82625aa90","originalAuthorName":"杨伟"},{"authorName":"杨鸣波","id":"0fc41454-1ba3-40b0-8f47-5bd3a0179cb1","originalAuthorName":"杨鸣波"}],"doi":"","fpage":"127","id":"35dab617-5aa8-4f87-8384-6da3e61921bd","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"188ad0f9-a628-4ee5-b68b-fec64a6cd0c0","keyword":"纤维素","originalKeyword":"微晶纤维素"},{"id":"6cabcb27-8e8f-4602-b77a-77e8cc1696de","keyword":"马来酸酐","originalKeyword":"马来酸酐"},{"id":"74e017a2-e08c-4108-bdde-62b97e178a40","keyword":"固相接枝","originalKeyword":"固相接枝"}],"language":"zh","publisherId":"gfzclkxygc201003035","title":"马来酸酐固相接枝纤维素","volume":"26","year":"2010"},{"abstractinfo":"以纤维素(MCC)为模板,采用原位复合法制备MCC/CdS纳米复合材料。研究了超声波预处理以及镉离子、硫离子物质的量比对复合效果的影响,用扫描电镜(SEM),原子力显微镜(AFM),X射线衍射,荧光光谱(PL)以及激光共聚焦显微镜(CLSM)对复合材料的结构及性能进行表征。研究表明,超声波预处理后的纤维素对镉离子吸附能力更强,粒径为30 nm~100nm的CdS粒子均匀分布于纤维素表面,所得CdS为立方型晶体,复合材料体现出一定强度的光致发光性,较佳Cd2+∶S2-(物质的量比)为3∶1。","authors":[{"authorName":"苏霞","id":"3126b4f3-564c-42db-8a50-94d275c273bf","originalAuthorName":"苏霞"},{"authorName":"唐爱民","id":"d26137b3-7b04-46ff-9f11-774085620885","originalAuthorName":"唐爱民"}],"doi":"","fpage":"134","id":"b0aaad3f-286c-4bb8-a05c-be82d5579013","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0df6733e-b757-4b5e-932a-f46a2a153b01","keyword":"纤维素","originalKeyword":"微晶纤维素"},{"id":"26dcf850-85c3-44fe-89a6-7c1e04035715","keyword":"纳米硫化镉","originalKeyword":"纳米硫化镉"},{"id":"938cfec7-ace0-4989-96c4-b38d3eb49344","keyword":"原位复合","originalKeyword":"原位复合"},{"id":"1f459880-2bd9-42ac-9354-cdd509594027","keyword":"光致发光","originalKeyword":"光致发光"}],"language":"zh","publisherId":"gfzclkxygc201109037","title":"纤维素/CdS纳米复合材料的原位复合反应","volume":"27","year":"2011"},{"abstractinfo":"以棒状纳米纤维素(Nanocrystalline cellulose, NCC)为形貌诱导剂, TiCl4为原料, 采用水解法在70℃的温度下反应4~6 h, 制备了TiO2花状纳米晶体. 采用TEM、HRTEM、XRD和FTIR对不同条件下制得的TiO2晶体的微观形貌、晶粒尺寸和相组成进行了表征, 探讨了TiCl4的用量及反应时间对晶体形貌和型的影响, 并对其形成机理进行分析. 纳米纤维素表面富含大量羟基, 可与TiO2之间形成氢键连接, 促使TiO2在其表面的异质成核和生长, 同时纳米纤维素在TiO2 表面的吸附作用, 改变了各晶面的表面能和生长速度, 使TiO2沿着[110] 方向优先生长形成一维针状物, 针状物再进一步聚集形成花状聚集体. 以甲基橙为目标污染物, 测试了所得TiO2纳米花状晶体的光催化性能. 结果表明, 随着TiCl4用量的增多及反应时间的延长, 所制得的TiO2纳米晶体中金红石含量增多, 形貌逐渐复杂化, 光催化性能下降.","authors":[{"authorName":"彭新艳","id":"e34a491e-80c1-4b6b-85d0-d8fe435f4a3b","originalAuthorName":"彭新艳"},{"authorName":"丁恩勇","id":"591f0d6a-6332-4e77-9f51-6bac4d8f93e5","originalAuthorName":"丁恩勇"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2012.11701","fpage":"1068","id":"5a6857f8-5553-4ae5-a3e9-bda49e3a47a7","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"62f4ceda-28c7-4ff4-9cea-181bcdbb98bf","keyword":"纳米纤维素; 二氧化钛; 花状; 四氯化钛","originalKeyword":"纳米微晶纤维素; 二氧化钛; 花状; 四氯化钛"}],"language":"zh","publisherId":"1000-324X_2012_10_4","title":"棒状纳米纤维素诱导制备花状TiO2纳米晶体","volume":"27","year":"2012"},{"abstractinfo":"以棒状纳米纤维素(Nanocrystalline cellulose,NCC)为形貌诱导剂,TiCl4为原料,采用水解法在70℃的温度下反应4~6 h,制备了TiO2花状纳米晶体.采用TEM、HRTEM、XRD和FTIR对不同条件下制得的TiO2晶体的微观形貌、晶粒尺寸和相组成进行了表征,探讨了TiCl4的用量及反应时间对晶体形貌和型的影响,并对其形成机理进行分析.纳米纤维素表面富含大量羟基,可与TiO2之间形成氢键连接,促使TiO2在其表面的异质成核和生长,同时纳米纤维素在TiO2表面的吸附作用,改变了各晶面的表面能和生长速度,使TiO2沿着[110]方向优先生长形成一维针状物,针状物再进一步聚集形成花状聚集体.以甲基橙为目标污染物,测试了所得TiO2纳米花状晶体的光催化性能.结果表明,随着TiCl4用量的增多及反应时间的延长,所制得的TiO2纳米晶体中金红石含量增多,形貌逐渐复杂化,光催化性能下降.","authors":[{"authorName":"彭新艳","id":"b0f6dd26-5e87-475f-9b2f-c90f441e59fc","originalAuthorName":"彭新艳"},{"authorName":"丁恩勇","id":"df6873a7-8a89-41a5-a0b3-b1faeb41482d","originalAuthorName":"丁恩勇"}],"doi":"10.3724/SP.J.1077.2012.11701","fpage":"1068","id":"d8cf246f-2814-4c22-8e0f-364cf41edf5d","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a10bbeaf-ac67-4126-8f85-f868640a8ddf","keyword":"纳米纤维素","originalKeyword":"纳米微晶纤维素"},{"id":"5017e48d-91ea-4d6a-87a3-38439760cb61","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"3ec63db5-d05a-4380-80c0-0aab13bb9f21","keyword":"花状","originalKeyword":"花状"},{"id":"073ed4b8-4d5c-414b-9155-4424215a8cce","keyword":"四氯化钛","originalKeyword":"四氯化钛"}],"language":"zh","publisherId":"wjclxb201210011","title":"棒状纳米纤维素诱导制备花状TiO2纳米晶体","volume":"27","year":"2012"},{"abstractinfo":"以纤维素(MCC)为原料,基于酸水解法制备了纳米纤维素(NCC).随后,在水/二甲基亚砜反应体系中,以2,3-环氧丙基三甲基氯化铵(GTMAC)为阳离子醚化剂对 NCC进行改性得到了阳离子化的纳米纤维素(CNCC).最后,对NCC、CNCC在纸张阻隔涂布中的应用进行了初步探讨.实验结果表明,NCC 呈棒状结构,粒径10~80 nm,长度<400 nm,其水相分散液在光照下呈现特殊的蓝光效应.通过氮元素分析法,测得CNCC的取代度为4.1%;FT-IR、XRD 分析结果确证了 NCC 被成功改性;TEM、TG 分析结果表明,与 NCC相比,CNCC具有较好的分散性和热稳定性.初步应用结果表明,相对于 NCC,CNCC 对涂布纸阻隔性能改善效果较为明显,且当添加量为0.2%时效果最佳,与零添加的涂布纸相比,透气度下降了22.4%,吸水性降低了34.4%.","authors":[{"authorName":"刘东东","id":"7a41a93b-dbe5-476b-9350-9fe64e74d159","originalAuthorName":"刘东东"},{"authorName":"唐艳军","id":"e01dabad-9d47-44e1-8847-8212fdde7a18","originalAuthorName":"唐艳军"},{"authorName":"张馨琪","id":"1223f205-86f2-400f-a583-a96dfa445f4b","originalAuthorName":"张馨琪"},{"authorName":"黄彪彪","id":"4e995ed2-d4ff-4c63-bef4-b85401b972e6","originalAuthorName":"黄彪彪"},{"authorName":"张婉清","id":"c48a5fc2-a1aa-4d95-8a70-3d2f6f7157bd","originalAuthorName":"张婉清"}],"doi":"10.3969/j.issn.1001-9731.2016.10.045","fpage":"10239","id":"ffb8e245-39fe-48d7-ac9a-7ce7bc16cd0e","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8bba2e17-4f76-4283-9b95-b2b323b6b0f8","keyword":"纳米纤维素","originalKeyword":"纳米微晶纤维素"},{"id":"c9c62bf7-bdb5-48ec-b7a9-e8a585eeb6e5","keyword":"阳离子化","originalKeyword":"阳离子化"},{"id":"2fc6d73f-e8c4-4394-b3f7-2cab26abf10e","keyword":"取代度","originalKeyword":"取代度"},{"id":"b36ddcc9-f087-4e30-a3f4-50ccab36e64b","keyword":"表面涂布","originalKeyword":"表面涂布"},{"id":"1eb0a1ae-20ad-447a-9f5f-c9a1a58274df","keyword":"阻隔性能","originalKeyword":"阻隔性能"}],"language":"zh","publisherId":"gncl201610045","title":"纳米纤维素的制备、改性及其在纸张阻隔涂布中的应用?","volume":"47","year":"2016"},{"abstractinfo":"采用硫酸酸解纤维素(MCC)的方法制备了纳米纤维素(NCC),并将其作为填料部分替代白炭黑(SiOz),制备了纳米纤维素一白炭黑/天然橡胶((NCC—SiO。)/NR)复合材料。结果表明,NCC的加入在保持SiO2增强NR基本力学性能的同时,使压缩永久变形由11.4%下降到5.9%,压缩疲劳生热则由19.9℃下降至10.6℃。当NCC与sioz的质量比为10:20时,(NCC—SiO2)/NR复合材料的一级和六级龟裂屈挠次数分别由Si02/NR的2.5×10、6.0×10。次提高到7.0×10、1.2×10次;老化性能也优于Si02/NR复合材料,老化后拉伸强度、撕裂强度及硬度分别上升了40%、21%和25%,永久变形下降了25%,拉伸强度和断裂伸长率则基本不变;动态力学性能测试结果表明,NCC与SiOz的质量比为0:30-20:10时,复合材料0℃的胶料抗湿滑性能tan占基本不变,而60℃胶料的滚动阻力tan艿却由0.060下降至0.049。SEM结果表明:NCC—SiO2在NR的分散性优于SiO2,与NR基体界面结合更加紧密。","authors":[{"authorName":"徐苏华","id":"b7972c27-8477-4488-a6a8-bb6a3f2b1bce","originalAuthorName":"徐苏华"},{"authorName":"古菊","id":"3d1622b2-533d-49cc-9a61-2a6ab5ffb19e","originalAuthorName":"古菊"},{"authorName":"罗远芳","id":"8cb1bce7-a50f-403b-9e06-5c82f0ac13d7","originalAuthorName":"罗远芳"},{"authorName":"贾德民","id":"5b87ffb7-d6e8-4a73-8d89-4f33ee45faa0","originalAuthorName":"贾德民"}],"doi":"","fpage":"39","id":"1a84ae7c-7c0b-4726-95c0-d8da80170888","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a2db2c5c-3b2b-42ad-be43-2f75d85ca685","keyword":"天然橡胶","originalKeyword":"天然橡胶"},{"id":"6ef6de55-3901-4d7f-892c-0d8b4ce877e7","keyword":"纳米纤维素","originalKeyword":"纳米微晶纤维素"},{"id":"eea333e7-d8e1-4c1c-91b5-25340a7f13bf","keyword":"白炭黑","originalKeyword":"白炭黑"},{"id":"73cb1f67-4655-4dff-8d9b-69f4d7f4ec50","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"54eed608-7a7d-42dc-9c4c-f0fdbc4bcb3a","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"fhclxb201106007","title":"纳米纤维素对白炭黑/天然橡胶复合材料性能的影响","volume":"28","year":"2011"},{"abstractinfo":"通过对剑麻纤维进行预处理、碱处理、酸解等步骤制备剑麻纤维素,采用红外光谱(FT-IR)、X射线衍射(XRD)、偏光显微镜(POM)、扫描电镜(SEM)、差示扫描量热(DSC)和热重分析(TGA)等方法对产物进行了表征。红外谱图分析表明,所制备的剑麻纤维素的主要成分为纤维素;而XRD、POM和SEM结果表明,剑麻纤维素纤维素Ⅰ的形式存在,长度尺寸在50μm~150μm之间,直径10μm左右;DSC和TGA热分析结果表明,剑麻纤维素在323.7℃处有一尖锐的结晶熔融吸热峰,其初始热分解温度达到337℃,比普通剑麻纤维的初始热分解温度提高60℃,并且其在700℃时的最后残留物仅为0.05%。","authors":[{"authorName":"李肖建","id":"ea17f0bb-627c-4ed0-9799-516202c07c59","originalAuthorName":"李肖建"},{"authorName":"刘红霞","id":"54e6e0a9-630d-44bd-a440-8df82b3cefb0","originalAuthorName":"刘红霞"},{"authorName":"韦春","id":"61008cec-1d08-4a7a-8141-5db648d937f7","originalAuthorName":"韦春"},{"authorName":"吕建","id":"1195278c-b494-42aa-b298-bfdc2d2c62d1","originalAuthorName":"吕建"},{"authorName":"潘冬明","id":"b3a3a07a-dd8f-45b1-a423-6c888e414aa1","originalAuthorName":"潘冬明"},{"authorName":"党晓东","id":"7c7cc12b-e61f-474c-813f-982f38a1fa6d","originalAuthorName":"党晓东"}],"doi":"","fpage":"160","id":"79524200-1ecd-43fb-bd6c-0740f8e429e8","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"831c7a6f-2097-44a2-be97-06cbc0af3695","keyword":"剑麻纤维","originalKeyword":"剑麻纤维"},{"id":"1c77aca0-e18d-479e-8913-ba1551ccac5e","keyword":"纤维素","originalKeyword":"纤维素微晶"},{"id":"09f9a1c8-018f-42f6-b3ce-1b363ce22644","keyword":"制备","originalKeyword":"制备"},{"id":"e21af266-a4f1-4d9e-9de8-25da35dafca8","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"gfzclkxygc201208040","title":"剑麻纤维素的制备与表征","volume":"28","year":"2012"},{"abstractinfo":"对纳米纤维素(NCC)增强改性聚脲/丙烯酸树脂(PUA)复合涂膜的性能进行了研究.通过掺入占PUA不同质量分数的NCC来研究其对复合涂膜整体性能的影响.结果表明,随着NCC用量的增大,复合涂膜的拉伸强度先增大后减小.当NCC用量为5%时对涂膜的增强效果最佳,抗拉强度达到12.91 MPa,较未改性的复合涂膜提高了54.98%.而改性复合涂膜的吸水率呈现先减小后增大的趋势,NCC用量为5%左右时吸水率达到最小.5%NCC的加入对复合涂膜的热性能及透光性能影响不大,但改善了复合涂膜的耐高温性能和耐磨性能.","authors":[{"authorName":"王勇","id":"2b37b421-435a-4d30-bb51-609b539e5e51","originalAuthorName":"王勇"},{"authorName":"宋慧娟","id":"8aeaeff3-ede4-488c-bedf-1c0c01956274","originalAuthorName":"宋慧娟"},{"authorName":"谢绍祥","id":"b9d8afd2-feca-4634-b3e4-3ea8103c013e","originalAuthorName":"谢绍祥"}],"doi":"10.11896/j.issn.1005-023X.2015.06.003","fpage":"11","id":"71fb5f21-0a93-447e-86f4-b7d91409e9c7","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e81fdf9e-24bf-4f86-bfcf-a3537cf9b745","keyword":"纳米纤维素","originalKeyword":"纳米微晶纤维素"},{"id":"9ca42659-4350-48ab-91b8-91896a0de634","keyword":"聚脲/丙烯酸树脂","originalKeyword":"聚脲/丙烯酸树脂"},{"id":"52c2b0ff-4d85-4ee6-8345-94e2e7e9c1f5","keyword":"拉伸强度","originalKeyword":"拉伸强度"},{"id":"dbfb76c6-9726-457a-9aec-95f1336c6ed5","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"cldb201506003","title":"纳米纤维素增强改性聚脲/丙烯酸树脂复合涂膜的性能研究","volume":"29","year":"2015"}],"totalpage":6178,"totalrecord":61780}