在结合可变发射率几种机制的基础上,介绍了具有温控可变发射率的典型ABO3型锰基氧化物的热敏感特性研究进展.分别从AgO3型锰基氧化物的结构,包括其晶体结构、电子结构和磁结构,以及红外振动模式的角度分析了其对该氧化物红外发射率的影响;同时,阐述了该氧化物热敏感特性的国内外研究进展,并提出了该氧化物热敏感特性研究目前存在的问题与发展方向.
参考文献
[1] | Piccirillo C;Binions R;Parkin IP .Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD[J].Chemical vapor deposition: CVD,2007(4):145-151. |
[2] | Platt J R .Electrochromism,a possible change of color producible in dyes by an electic field[J].Journal of Chemical Physics,1961,34(03):862. |
[3] | Granqvistc C G;Hultaker A .Transparent and conducting ITO films:New development and applications[J].THIN SOLID FILMS,2002,411(01):1. |
[4] | Hale J S;Woollam J A .Prospects for IR emissivity control using electrochromic structures[J].THIN SOLID FILMS,1999,339(1-2):174. |
[5] | E. B. Franke;C. L. Trimble;M. Schubert .All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region[J].Applied physics letters,2000(7):930-932. |
[6] | Smith G B;Niklasson G A;Svensson J et al.Noble metal based transparent infrared reflectors:Experiments and theoretical analyses for very thin gold films[J].Journal of Applied Physics,1986,59(02):571. |
[7] | Goldner R B;Arntz F O;TE Haas .D-Electrons and two active thin film devices for achieving a solar energy economy[J].Solar Energy Materials and Solar Cells,1994,32(04):421. |
[8] | Zhang J G;Benson D K;Trancy C E et al.Optimization study of solid-state electrochromic devices based on WO3/ lithium-polymer electrolyte/V2O5 structures[J].Journal of the Electrochemical Society,1994,141(10):2795. |
[9] | Schlotter P;Baur G;Schmidt R et al.Laminated electrochromic device for smart windows[J].Proceed SPIE,1994,2255:351. |
[10] | Munro B.;Kramer S.;Schmidt H.;Zapp P.;Conrad P. .Development of electrochromic cells by the sol-gel process[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,1998(1/4):131-137. |
[11] | Goldner R B;Arntz F O;Dickson K et al.Some lessons learned from research on a thin film electrochromic window[J].Solid State Ionicis,1994,70-71:613. |
[12] | Cogan SF.;Klein JD.;Nguyen NM.;Jones RB.;Plante TD.;Rauh RD. .VARIABLE TRANSMITTANCE COATINGS USING ELECTROCHROMIC LITHIUM CHROMATE AND AMORPHOUS WO3 THIN FILMS[J].Journal of the Electrochemical Society,1997(3):956-960. |
[13] | Mathew JGH;Sapers SP;Cumbo MJ;OBrien NA;Sargent RB;Raksha VP;Lahaderne RB;Hichwa BP .Large area electrochromics for architectural applications[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,1997(0):342-346. |
[14] | Hutchins M G;Butt N S;Topping A J et al.Tantalum oxide thin film ionic conductors for monolithic electrochromic devices[J].Proceedings SPIE,2001,4458:120. |
[15] | Azens A.;Vaivars G.;Nordborg H.;Granqvist CG.;Kullman L. .Sputter-deposited nickel oxide for electrochromic applications[J].Solid state ionics,1998(Special Issue SI):449-456. |
[16] | Topart P;Hourquebie P .Infrared switching electroemissive devices based on highly conducting polymers[J].THIN SOLID FILMS,1999,352(1-2):243. |
[17] | Granqvist C G.Handbook of inorganic electrochromic materials[M].New York:Elsevier,1995:19. |
[18] | Larsson A L;Niklasson G A .Infrared emittance modulatin of all-thin-film electrochromic devices[J].Materials Letters,2004,58(20):2517. |
[19] | Darrin A G;Osiander R;Champion J.Variable emissivity through MEMS technology[A].Las Vegas,2000 |
[20] | Douglas D M;Swanson T;Osiander R.Development of variable emittance thermal suite for space thechnology 5 microsatellite[A].,2002 |
[21] | 黄良甫,贾付云.空间微机电系统的研究与进展[J].真空与低温,2002(04):187-196. |
[22] | Tachikawa S;Ohnishi A;Shimakawa Y.Development of a variable emittance radiator based on a perovskite manganese oxide[A].St.Louis,2001 |
[23] | 申星梅 .掺杂型镧锰氧化物的制备及其红外发射率研究[D].南京航空航天大学,2010. |
[24] | Shimakawa Y;Yoshitake T;Kubo Y et al.A variable emittance radiator based on metal-insulator transition of (La,Sr) MnO3 thin films[J].Applied Physics Letters,2002,80(25):4864. |
[25] | Anderson P W;Hasegawa H .Considerations on double exchange[J].Physical Review,1955,100(02):675. |
[26] | Arima T;Tokura Y .Optical study of electronic structure in perovskity-type RMO3 (R=La,Y; M=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu)[J].Journal of The Physical Society of Japan,1995,64(07):2488. |
[27] | Kim K H;Gu J Y et al.Frequency shifts of the internal phonon modes in La0.7 Ca0.3 MnO3[J].Physical Review Letters,1996,77(09):1877. |
[28] | Shimazaki K;Tachikawa S;Ohnishi A et al.Radiative and optical properties of La1-xSrxMnO3 (0≤x≤0.4)in the vicinity of metal-insulator transition temperature from 173 to 414 K[J].International Journal of Thermophysics,2001,22(05):1549. |
[29] | Nikanpour D.Smart radiator offering autonomy in satellite thermal control[M].Canadian:Space Agency,2003 |
[30] | Soltani M;Chaker M;Jiang XX;Nikanpour D;Margot J .Thermochromic La1-xSrxMnO3 (x=0.1, 0.175, and 0.3) smart coatings grown by reactive pulsed laser deposition[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,2006(4):1518-1523. |
[31] | Tang G;Yu Y;Che Wn et al.The electrical resistivity and thermal infrared properties of La1-x Srx MnO3 compounds[J].Journal of Alloys and Compounds,2008,461(1-2):486. |
[32] | Tang G;Yu Y;Chen W et al.Thermochromic properties of manganese oxides La1-x AxMnO3 (A=Ca,Ba)[J].Materials Letters,2008,62(17-18):2914. |
[33] | 李强,匡柳,宣益民.热致变色可变发射率材料的制备与辐射特性研究[J].工程热物理学报,2009(06):1005-1008. |
[34] | Tachikawa S;Shimazaki K;Ohnishi A.Smart radiation device based on a perovskite manganese oxide[A].Noordwikk,Netherlands,2003 |
[35] | Shimazaki K;Tachikawa S;Ohnishi A.Design of thermal radiative properties of multilayer films on a variable emittance radiator[A].Orland,Florida,2001 |
[36] | Computational design of solar reflection and far-infrared transmission films for a variable emittance device[J].Applied optics,2003(7):1360-1366. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%